|
|
(One intermediate revision not shown.) |
Line 1: |
Line 1: |
| | | |
| ==Crystal Structure of Human Heme Oxygenase-1 in Complex with 1-(Adamantan-1-yl)-2-(1H-imidazol-1-yl)ethanone== | | ==Crystal Structure of Human Heme Oxygenase-1 in Complex with 1-(Adamantan-1-yl)-2-(1H-imidazol-1-yl)ethanone== |
- | <StructureSection load='3czy' size='340' side='right' caption='[[3czy]], [[Resolution|resolution]] 1.54Å' scene=''> | + | <StructureSection load='3czy' size='340' side='right'caption='[[3czy]], [[Resolution|resolution]] 1.54Å' scene=''> |
| == Structural highlights == | | == Structural highlights == |
- | <table><tr><td colspan='2'>[[3czy]] is a 2 chain structure with sequence from [http://en.wikipedia.org/wiki/Human Human]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=3CZY OCA]. For a <b>guided tour on the structure components</b> use [http://oca.weizmann.ac.il/oca-docs/fgij/fg.htm?mol=3CZY FirstGlance]. <br> | + | <table><tr><td colspan='2'>[[3czy]] is a 2 chain structure with sequence from [https://en.wikipedia.org/wiki/Homo_sapiens Homo sapiens]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=3CZY OCA]. For a <b>guided tour on the structure components</b> use [https://proteopedia.org/fgij/fg.htm?mol=3CZY FirstGlance]. <br> |
- | </td></tr><tr id='ligand'><td class="sblockLbl"><b>[[Ligand|Ligands:]]</b></td><td class="sblockDat"><scene name='pdbligand=AD8:1-(ADAMANTAN-1-YL)-2-(1H-IMIDAZOL-1-YL)ETHANONE'>AD8</scene>, <scene name='pdbligand=HEM:PROTOPORPHYRIN+IX+CONTAINING+FE'>HEM</scene></td></tr> | + | </td></tr><tr id='method'><td class="sblockLbl"><b>[[Empirical_models|Method:]]</b></td><td class="sblockDat" id="methodDat">X-ray diffraction, [[Resolution|Resolution]] 1.54Å</td></tr> |
- | <tr id='gene'><td class="sblockLbl"><b>[[Gene|Gene:]]</b></td><td class="sblockDat">HMOX1, HO, HO1 ([http://www.ncbi.nlm.nih.gov/Taxonomy/Browser/wwwtax.cgi?mode=Info&srchmode=5&id=9606 HUMAN])</td></tr> | + | <tr id='ligand'><td class="sblockLbl"><b>[[Ligand|Ligands:]]</b></td><td class="sblockDat" id="ligandDat"><scene name='pdbligand=AD8:1-(ADAMANTAN-1-YL)-2-(1H-IMIDAZOL-1-YL)ETHANONE'>AD8</scene>, <scene name='pdbligand=HEM:PROTOPORPHYRIN+IX+CONTAINING+FE'>HEM</scene></td></tr> |
- | <tr id='activity'><td class="sblockLbl"><b>Activity:</b></td><td class="sblockDat"><span class='plainlinks'>[http://en.wikipedia.org/wiki/Heme_oxygenase Heme oxygenase], with EC number [http://www.brenda-enzymes.info/php/result_flat.php4?ecno=1.14.99.3 1.14.99.3] </span></td></tr>
| + | <tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[https://proteopedia.org/fgij/fg.htm?mol=3czy FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=3czy OCA], [https://pdbe.org/3czy PDBe], [https://www.rcsb.org/pdb/explore.do?structureId=3czy RCSB], [https://www.ebi.ac.uk/pdbsum/3czy PDBsum], [https://prosat.h-its.org/prosat/prosatexe?pdbcode=3czy ProSAT]</span></td></tr> |
- | <tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[http://oca.weizmann.ac.il/oca-docs/fgij/fg.htm?mol=3czy FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=3czy OCA], [http://pdbe.org/3czy PDBe], [http://www.rcsb.org/pdb/explore.do?structureId=3czy RCSB], [http://www.ebi.ac.uk/pdbsum/3czy PDBsum], [http://prosat.h-its.org/prosat/prosatexe?pdbcode=3czy ProSAT]</span></td></tr> | + | |
| </table> | | </table> |
| == Disease == | | == Disease == |
- | [[http://www.uniprot.org/uniprot/HMOX1_HUMAN HMOX1_HUMAN]] Defects in HMOX1 are the cause of heme oxygenase 1 deficiency (HMOX1D) [MIM:[http://omim.org/entry/614034 614034]]. A disease characterized by impaired stress hematopoiesis, resulting in marked erythrocyte fragmentation and intravascular hemolysis, coagulation abnormalities, endothelial damage, and iron deposition in renal and hepatic tissues. Clinical features include persistent hemolytic anemia, asplenia, nephritis, generalized erythematous rash, growth retardation and hepatomegaly.<ref>PMID:9884342</ref> | + | [https://www.uniprot.org/uniprot/HMOX1_HUMAN HMOX1_HUMAN] Defects in HMOX1 are the cause of heme oxygenase 1 deficiency (HMOX1D) [MIM:[https://omim.org/entry/614034 614034]. A disease characterized by impaired stress hematopoiesis, resulting in marked erythrocyte fragmentation and intravascular hemolysis, coagulation abnormalities, endothelial damage, and iron deposition in renal and hepatic tissues. Clinical features include persistent hemolytic anemia, asplenia, nephritis, generalized erythematous rash, growth retardation and hepatomegaly.<ref>PMID:9884342</ref> |
| == Function == | | == Function == |
- | [[http://www.uniprot.org/uniprot/HMOX1_HUMAN HMOX1_HUMAN]] Heme oxygenase cleaves the heme ring at the alpha methene bridge to form biliverdin. Biliverdin is subsequently converted to bilirubin by biliverdin reductase. Under physiological conditions, the activity of heme oxygenase is highest in the spleen, where senescent erythrocytes are sequestrated and destroyed. | + | [https://www.uniprot.org/uniprot/HMOX1_HUMAN HMOX1_HUMAN] Heme oxygenase cleaves the heme ring at the alpha methene bridge to form biliverdin. Biliverdin is subsequently converted to bilirubin by biliverdin reductase. Under physiological conditions, the activity of heme oxygenase is highest in the spleen, where senescent erythrocytes are sequestrated and destroyed. |
| == Evolutionary Conservation == | | == Evolutionary Conservation == |
| [[Image:Consurf_key_small.gif|200px|right]] | | [[Image:Consurf_key_small.gif|200px|right]] |
Line 34: |
Line 33: |
| | | |
| ==See Also== | | ==See Also== |
- | *[[Heme oxygenase|Heme oxygenase]] | + | *[[Heme oxygenase 3D structures|Heme oxygenase 3D structures]] |
| == References == | | == References == |
| <references/> | | <references/> |
| __TOC__ | | __TOC__ |
| </StructureSection> | | </StructureSection> |
- | [[Category: Heme oxygenase]] | + | [[Category: Homo sapiens]] |
- | [[Category: Human]] | + | [[Category: Large Structures]] |
- | [[Category: Jia, Z]] | + | [[Category: Jia Z]] |
- | [[Category: Rahman, M N]] | + | [[Category: Rahman MN]] |
- | [[Category: Endoplasmic reticulum]]
| + | |
- | [[Category: Heme]]
| + | |
- | [[Category: Heme oxygenase-1 inhibitor complex]]
| + | |
- | [[Category: Iron]]
| + | |
- | [[Category: Metal-binding]]
| + | |
- | [[Category: Microsome]]
| + | |
- | [[Category: Oxidoreductase]]
| + | |
- | [[Category: Phosphoprotein]]
| + | |
- | [[Category: Polymorphism]]
| + | |
| Structural highlights
Disease
HMOX1_HUMAN Defects in HMOX1 are the cause of heme oxygenase 1 deficiency (HMOX1D) [MIM:614034. A disease characterized by impaired stress hematopoiesis, resulting in marked erythrocyte fragmentation and intravascular hemolysis, coagulation abnormalities, endothelial damage, and iron deposition in renal and hepatic tissues. Clinical features include persistent hemolytic anemia, asplenia, nephritis, generalized erythematous rash, growth retardation and hepatomegaly.[1]
Function
HMOX1_HUMAN Heme oxygenase cleaves the heme ring at the alpha methene bridge to form biliverdin. Biliverdin is subsequently converted to bilirubin by biliverdin reductase. Under physiological conditions, the activity of heme oxygenase is highest in the spleen, where senescent erythrocytes are sequestrated and destroyed.
Evolutionary Conservation
Check, as determined by ConSurfDB. You may read the explanation of the method and the full data available from ConSurf.
Publication Abstract from PubMed
Development of inhibitors specific for heme oxygenases (HOs) should aid our understanding of the HO system and facilitate future therapeutic applications. The crystal structure of human HO-1 complexed with 1-(adamantan-1-yl)-2-(1 H-imidazol-1-yl)ethanone ( 3) was determined. This inhibitor binds to the HO-1 distal pocket such that the imidazolyl moiety coordinates with heme iron while the adamantyl group is stabilized by a hydrophobic binding pocket. Distal helix flexibility, coupled with shifts in proximal residues and heme, acts to expand the distal pocket, thus accommodating the bulky inhibitor without displacing heme. Inhibitor binding effectively displaces the catalytically critical distal water ligand. Comparison with the binding of 2-[2-(4-chlorophenyl)ethyl]-2-[1 H-imidazol-1-yl)methyl]-1,3-dioxolane ( 2) revealed a common binding mode, despite differing chemical structures beyond the imidazolyl moiety. The inhibitor binding pocket is flexible, yet contains well-defined subpockets to accommodate appropriate functional groups. On the basis of these structural insights, we rationalize binding features to optimize inhibitor design.
X-ray Crystal Structure of Human Heme Oxygenase-1 in Complex with 1-(Adamantan-1-yl)-2-(1H-imidazol-1-yl)ethanone: A Common Binding Mode for Imidazole-Based Heme Oxygenase-1 Inhibitors.,Rahman MN, Vlahakis JZ, Szarek WA, Nakatsu K, Jia Z J Med Chem. 2008 Sep 18. PMID:18798608[2]
From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.
See Also
References
- ↑ Yachie A, Niida Y, Wada T, Igarashi N, Kaneda H, Toma T, Ohta K, Kasahara Y, Koizumi S. Oxidative stress causes enhanced endothelial cell injury in human heme oxygenase-1 deficiency. J Clin Invest. 1999 Jan;103(1):129-35. PMID:9884342 doi:10.1172/JCI4165
- ↑ Rahman MN, Vlahakis JZ, Szarek WA, Nakatsu K, Jia Z. X-ray Crystal Structure of Human Heme Oxygenase-1 in Complex with 1-(Adamantan-1-yl)-2-(1H-imidazol-1-yl)ethanone: A Common Binding Mode for Imidazole-Based Heme Oxygenase-1 Inhibitors. J Med Chem. 2008 Sep 18. PMID:18798608 doi:10.1021/jm800505m
|