|
|
(One intermediate revision not shown.) |
Line 1: |
Line 1: |
| | | |
| ==Crystal Structure of DNR from Pseudomonas aeruginosa.== | | ==Crystal Structure of DNR from Pseudomonas aeruginosa.== |
- | <StructureSection load='3dkw' size='340' side='right' caption='[[3dkw]], [[Resolution|resolution]] 3.60Å' scene=''> | + | <StructureSection load='3dkw' size='340' side='right'caption='[[3dkw]], [[Resolution|resolution]] 3.60Å' scene=''> |
| == Structural highlights == | | == Structural highlights == |
- | <table><tr><td colspan='2'>[[3dkw]] is a 10 chain structure with sequence from [http://en.wikipedia.org/wiki/"bacillus_aeruginosus"_(schroeter_1872)_trevisan_1885 "bacillus aeruginosus" (schroeter 1872) trevisan 1885]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=3DKW OCA]. For a <b>guided tour on the structure components</b> use [http://oca.weizmann.ac.il/oca-docs/fgij/fg.htm?mol=3DKW FirstGlance]. <br> | + | <table><tr><td colspan='2'>[[3dkw]] is a 10 chain structure with sequence from [https://en.wikipedia.org/wiki/Pseudomonas_aeruginosa Pseudomonas aeruginosa]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=3DKW OCA]. For a <b>guided tour on the structure components</b> use [https://proteopedia.org/fgij/fg.htm?mol=3DKW FirstGlance]. <br> |
- | </td></tr><tr id='related'><td class="sblockLbl"><b>[[Related_structure|Related:]]</b></td><td class="sblockDat">[[2z69|2z69]]</td></tr> | + | </td></tr><tr id='method'><td class="sblockLbl"><b>[[Empirical_models|Method:]]</b></td><td class="sblockDat" id="methodDat">X-ray diffraction, [[Resolution|Resolution]] 3.6Å</td></tr> |
- | <tr id='gene'><td class="sblockLbl"><b>[[Gene|Gene:]]</b></td><td class="sblockDat">dnr, PA0527 ([http://www.ncbi.nlm.nih.gov/Taxonomy/Browser/wwwtax.cgi?mode=Info&srchmode=5&id=287 "Bacillus aeruginosus" (Schroeter 1872) Trevisan 1885])</td></tr>
| + | <tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[https://proteopedia.org/fgij/fg.htm?mol=3dkw FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=3dkw OCA], [https://pdbe.org/3dkw PDBe], [https://www.rcsb.org/pdb/explore.do?structureId=3dkw RCSB], [https://www.ebi.ac.uk/pdbsum/3dkw PDBsum], [https://prosat.h-its.org/prosat/prosatexe?pdbcode=3dkw ProSAT]</span></td></tr> |
- | <tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[http://oca.weizmann.ac.il/oca-docs/fgij/fg.htm?mol=3dkw FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=3dkw OCA], [http://pdbe.org/3dkw PDBe], [http://www.rcsb.org/pdb/explore.do?structureId=3dkw RCSB], [http://www.ebi.ac.uk/pdbsum/3dkw PDBsum], [http://prosat.h-its.org/prosat/prosatexe?pdbcode=3dkw ProSAT]</span></td></tr> | + | |
| </table> | | </table> |
| + | == Function == |
| + | [https://www.uniprot.org/uniprot/Q51441_PSEAI Q51441_PSEAI] |
| == Evolutionary Conservation == | | == Evolutionary Conservation == |
| [[Image:Consurf_key_small.gif|200px|right]] | | [[Image:Consurf_key_small.gif|200px|right]] |
Line 31: |
Line 32: |
| __TOC__ | | __TOC__ |
| </StructureSection> | | </StructureSection> |
- | [[Category: Giardina, G]] | + | [[Category: Large Structures]] |
- | [[Category: Beta barrel]] | + | [[Category: Pseudomonas aeruginosa]] |
- | [[Category: Crp-fnr]] | + | [[Category: Giardina G]] |
- | [[Category: Dimerization helix]]
| + | |
- | [[Category: Homodimer]]
| + | |
- | [[Category: Hth]]
| + | |
- | [[Category: Transcription regulator]]
| + | |
| Structural highlights
Function
Q51441_PSEAI
Evolutionary Conservation
Check, as determined by ConSurfDB. You may read the explanation of the method and the full data available from ConSurf.
Publication Abstract from PubMed
The opportunistic pathogen Pseudomonas aeruginosa can grow in low oxygen, because it is capable of anaerobic respiration using nitrate as a terminal electron acceptor (denitrification). An intermediate of the denitrification pathway is nitric oxide, a compound that may become cytotoxic at high concentration. The intracellular levels of nitric oxide are tightly controlled by regulating the expression of the enzymes responsible for its synthesis and degradation (nitrite and nitric oxide reductases). In this article, we present the crystallographic structure of the wild-type dissimilative nitrate respiration regulator (DNR), a master regulator controlling expression of the denitrification machinery and a putative target for new therapeutic strategies. Comparison with other structures among the CRP-FNR class of regulators reveals that DNR has crystallized in a conformation that has never been observed before. In particular, the sensing domain of DNR has undergone a rotation of more than 50 degrees with respect to the other structures. This suggests that DNR may undergo an unexpected and very large conformational rearrangement on activation. Proteins 2009. (c) 2009 Wiley-Liss, Inc.
A dramatic conformational rearrangement is necessary for the activation of DNR from Pseudomonas aeruginosa. Crystal structure of wild-type DNR.,Giardina G, Rinaldo S, Castiglione N, Caruso M, Cutruzzola F Proteins. 2009 Mar 24. PMID:19415759[1]
From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.
References
- ↑ Giardina G, Rinaldo S, Castiglione N, Caruso M, Cutruzzola F. A dramatic conformational rearrangement is necessary for the activation of DNR from Pseudomonas aeruginosa. Crystal structure of wild-type DNR. Proteins. 2009 Mar 24. PMID:19415759 doi:10.1002/prot.22428
|