|
|
(One intermediate revision not shown.) |
Line 1: |
Line 1: |
| | | |
| ==Crystal structural analysis of Drosophila melanogaster dUTPase== | | ==Crystal structural analysis of Drosophila melanogaster dUTPase== |
- | <StructureSection load='3ecy' size='340' side='right' caption='[[3ecy]], [[Resolution|resolution]] 1.88Å' scene=''> | + | <StructureSection load='3ecy' size='340' side='right'caption='[[3ecy]], [[Resolution|resolution]] 1.88Å' scene=''> |
| == Structural highlights == | | == Structural highlights == |
- | <table><tr><td colspan='2'>[[3ecy]] is a 2 chain structure with sequence from [http://en.wikipedia.org/wiki/Drome Drome]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=3ECY OCA]. For a <b>guided tour on the structure components</b> use [http://oca.weizmann.ac.il/oca-docs/fgij/fg.htm?mol=3ECY FirstGlance]. <br> | + | <table><tr><td colspan='2'>[[3ecy]] is a 2 chain structure with sequence from [https://en.wikipedia.org/wiki/Drosophila_melanogaster Drosophila melanogaster]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=3ECY OCA]. For a <b>guided tour on the structure components</b> use [https://proteopedia.org/fgij/fg.htm?mol=3ECY FirstGlance]. <br> |
- | </td></tr><tr id='gene'><td class="sblockLbl"><b>[[Gene|Gene:]]</b></td><td class="sblockDat">dUTPase, BcDNA.LD08534, CG4584, Dmel_CG4584 ([http://www.ncbi.nlm.nih.gov/Taxonomy/Browser/wwwtax.cgi?mode=Info&srchmode=5&id=7227 DROME])</td></tr> | + | </td></tr><tr id='method'><td class="sblockLbl"><b>[[Empirical_models|Method:]]</b></td><td class="sblockDat" id="methodDat">X-ray diffraction, [[Resolution|Resolution]] 1.88Å</td></tr> |
- | <tr id='activity'><td class="sblockLbl"><b>Activity:</b></td><td class="sblockDat"><span class='plainlinks'>[http://en.wikipedia.org/wiki/dUTP_diphosphatase dUTP diphosphatase], with EC number [http://www.brenda-enzymes.info/php/result_flat.php4?ecno=3.6.1.23 3.6.1.23] </span></td></tr>
| + | <tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[https://proteopedia.org/fgij/fg.htm?mol=3ecy FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=3ecy OCA], [https://pdbe.org/3ecy PDBe], [https://www.rcsb.org/pdb/explore.do?structureId=3ecy RCSB], [https://www.ebi.ac.uk/pdbsum/3ecy PDBsum], [https://prosat.h-its.org/prosat/prosatexe?pdbcode=3ecy ProSAT]</span></td></tr> |
- | <tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[http://oca.weizmann.ac.il/oca-docs/fgij/fg.htm?mol=3ecy FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=3ecy OCA], [http://pdbe.org/3ecy PDBe], [http://www.rcsb.org/pdb/explore.do?structureId=3ecy RCSB], [http://www.ebi.ac.uk/pdbsum/3ecy PDBsum], [http://prosat.h-its.org/prosat/prosatexe?pdbcode=3ecy ProSAT]</span></td></tr> | + | |
| </table> | | </table> |
| + | == Function == |
| + | [https://www.uniprot.org/uniprot/Q9V3I1_DROME Q9V3I1_DROME] |
| == Evolutionary Conservation == | | == Evolutionary Conservation == |
| [[Image:Consurf_key_small.gif|200px|right]] | | [[Image:Consurf_key_small.gif|200px|right]] |
Line 31: |
Line 32: |
| __TOC__ | | __TOC__ |
| </StructureSection> | | </StructureSection> |
- | [[Category: Drome]] | + | [[Category: Drosophila melanogaster]] |
- | [[Category: DUTP diphosphatase]] | + | [[Category: Large Structures]] |
- | [[Category: Barabas, O]] | + | [[Category: Barabas O]] |
- | [[Category: Takacs, E]] | + | [[Category: Takacs E]] |
- | [[Category: Vertessy, B G]] | + | [[Category: Vertessy BG]] |
- | [[Category: Dimeric assembly]]
| + | |
- | [[Category: Hydrolase]]
| + | |
- | [[Category: Jelly-roll]]
| + | |
| Structural highlights
Function
Q9V3I1_DROME
Evolutionary Conservation
Check, as determined by ConSurfDB. You may read the explanation of the method and the full data available from ConSurf.
Publication Abstract from PubMed
Most dUTP pyrophosphatases (dUTPases) are homotrimers with interfaces formed between subunit surfaces, in the central channel, and by C-terminal beta-strand swapping. Analysis of intersubunit interactions reveals an important cohesive role for the C-terminus. This is reflected in the crystal structure of fruitfly dUTPase displaying a dimeric organization in crystals grown in alcohol solution, where only beta-strand swapping interactions between subunits are retained from the usual trimer structure. Mutations of a suggested hinge proline destabilize human and Escherichia coli dUTPases without preventing trimeric organization. Trimer formation was, however, prevented in the human enzyme by truncating the C-terminus before the swapping arm. The molecular shape of full-length enzymes in solution reveals the localization and variation in flexibility of N- and C-terminal segments.
Molecular shape and prominent role of beta-strand swapping in organization of dUTPase oligomers.,Takacs E, Barabas O, Petoukhov MV, Svergun DI, Vertessy BG FEBS Lett. 2009 Mar 4;583(5):865-71. Epub 2009 Feb 11. PMID:19302784[1]
From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.
References
- ↑ Takacs E, Barabas O, Petoukhov MV, Svergun DI, Vertessy BG. Molecular shape and prominent role of beta-strand swapping in organization of dUTPase oligomers. FEBS Lett. 2009 Mar 4;583(5):865-71. Epub 2009 Feb 11. PMID:19302784 doi:10.1016/j.febslet.2009.02.011
|