3fwb
From Proteopedia
(Difference between revisions)
(One intermediate revision not shown.) | |||
Line 1: | Line 1: | ||
==Sac3:Sus1:Cdc31 complex== | ==Sac3:Sus1:Cdc31 complex== | ||
- | <StructureSection load='3fwb' size='340' side='right' caption='[[3fwb]], [[Resolution|resolution]] 2.50Å' scene=''> | + | <StructureSection load='3fwb' size='340' side='right'caption='[[3fwb]], [[Resolution|resolution]] 2.50Å' scene=''> |
== Structural highlights == | == Structural highlights == | ||
- | <table><tr><td colspan='2'>[[3fwb]] is a 3 chain structure with sequence from [ | + | <table><tr><td colspan='2'>[[3fwb]] is a 3 chain structure with sequence from [https://en.wikipedia.org/wiki/Saccharomyces_cerevisiae Saccharomyces cerevisiae]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=3FWB OCA]. For a <b>guided tour on the structure components</b> use [https://proteopedia.org/fgij/fg.htm?mol=3FWB FirstGlance]. <br> |
- | </td></tr><tr id=' | + | </td></tr><tr id='method'><td class="sblockLbl"><b>[[Empirical_models|Method:]]</b></td><td class="sblockDat" id="methodDat">X-ray diffraction, [[Resolution|Resolution]] 2.5Å</td></tr> |
- | + | <tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[https://proteopedia.org/fgij/fg.htm?mol=3fwb FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=3fwb OCA], [https://pdbe.org/3fwb PDBe], [https://www.rcsb.org/pdb/explore.do?structureId=3fwb RCSB], [https://www.ebi.ac.uk/pdbsum/3fwb PDBsum], [https://prosat.h-its.org/prosat/prosatexe?pdbcode=3fwb ProSAT]</span></td></tr> | |
- | <tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[ | + | |
</table> | </table> | ||
== Function == | == Function == | ||
- | [ | + | [https://www.uniprot.org/uniprot/CDC31_YEAST CDC31_YEAST] Functions as a component of the nuclear pore complex (NPC) and the spindle pole body (SPB) half-bridge. At the SPB, it is recruited by KAR1 and MPS3 to the SPB half-bridge and involved in the initial steps of SPB duplication. It probably plays a similar role in de novo assembly of NPCs at the nuclear envelope. Also involved in connection with the protein kinase KIC1 in the maintenance of cell morphology and integrity.<ref>PMID:8188750</ref> <ref>PMID:8070654</ref> <ref>PMID:9813095</ref> <ref>PMID:11156974</ref> <ref>PMID:12486115</ref> <ref>PMID:14504268</ref> |
== Evolutionary Conservation == | == Evolutionary Conservation == | ||
[[Image:Consurf_key_small.gif|200px|right]] | [[Image:Consurf_key_small.gif|200px|right]] | ||
Line 20: | Line 19: | ||
</jmol>, as determined by [http://consurfdb.tau.ac.il/ ConSurfDB]. You may read the [[Conservation%2C_Evolutionary|explanation]] of the method and the full data available from [http://bental.tau.ac.il/new_ConSurfDB/main_output.php?pdb_ID=3fwb ConSurf]. | </jmol>, as determined by [http://consurfdb.tau.ac.il/ ConSurfDB]. You may read the [[Conservation%2C_Evolutionary|explanation]] of the method and the full data available from [http://bental.tau.ac.il/new_ConSurfDB/main_output.php?pdb_ID=3fwb ConSurf]. | ||
<div style="clear:both"></div> | <div style="clear:both"></div> | ||
- | <div style="background-color:#fffaf0;"> | ||
- | == Publication Abstract from PubMed == | ||
- | The yeast Sac3:Cdc31:Sus1:Thp1 (TREX-2) complex facilitates the repositioning and association of actively transcribing genes with nuclear pores (NPCs)-"gene gating"-that is central to integrating transcription, processing, and mRNA nuclear export. We present here the crystal structure of Sus1 and Cdc31 bound to a central region of Sac3 (the CID domain) that is crucial for its function. Sac3(CID) forms a long, gently undulating alpha helix around which one Cdc31 and two Sus1 chains are wrapped. Sus1 has an articulated helical hairpin fold that facilitates its wrapping around Sac3. In vivo studies using engineered mutations that selectively disrupted binding of individual chains to Sac3 indicated that Sus1 and Cdc31 function synergistically to promote NPC association of TREX-2 and mRNA nuclear export. These data indicate Sac3(CID) provides a scaffold within TREX-2 to integrate interactions between protein complexes to facilitate the coupling of transcription and mRNA export during gene expression. | ||
- | |||
- | Sus1, Cdc31, and the Sac3 CID region form a conserved interaction platform that promotes nuclear pore association and mRNA export.,Jani D, Lutz S, Marshall NJ, Fischer T, Kohler A, Ellisdon AM, Hurt E, Stewart M Mol Cell. 2009 Mar 27;33(6):727-37. PMID:19328066<ref>PMID:19328066</ref> | ||
- | |||
- | From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.<br> | ||
- | </div> | ||
- | <div class="pdbe-citations 3fwb" style="background-color:#fffaf0;"></div> | ||
==See Also== | ==See Also== | ||
- | *[[Nucleoporin|Nucleoporin]] | + | *[[Nucleoporin 3D structures|Nucleoporin 3D structures]] |
== References == | == References == | ||
<references/> | <references/> | ||
__TOC__ | __TOC__ | ||
</StructureSection> | </StructureSection> | ||
- | [[Category: | + | [[Category: Large Structures]] |
- | [[Category: | + | [[Category: Saccharomyces cerevisiae]] |
- | [[Category: | + | [[Category: Jani D]] |
- | [[Category: | + | [[Category: Stewart M]] |
- | + | ||
- | + | ||
- | + | ||
- | + | ||
- | + | ||
- | + | ||
- | + | ||
- | + | ||
- | + | ||
- | + | ||
- | + | ||
- | + | ||
- | + |
Current revision
Sac3:Sus1:Cdc31 complex
|