|
|
(One intermediate revision not shown.) |
Line 1: |
Line 1: |
| | | |
| ==DEAD-box RNA helicase== | | ==DEAD-box RNA helicase== |
- | <StructureSection load='5gi4' size='340' side='right' caption='[[5gi4]], [[Resolution|resolution]] 2.24Å' scene=''> | + | <StructureSection load='5gi4' size='340' side='right'caption='[[5gi4]], [[Resolution|resolution]] 2.24Å' scene=''> |
| == Structural highlights == | | == Structural highlights == |
- | <table><tr><td colspan='2'>[[5gi4]] is a 2 chain structure with sequence from [http://en.wikipedia.org/wiki/Ecoli Ecoli]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=5GI4 OCA]. For a <b>guided tour on the structure components</b> use [http://oca.weizmann.ac.il/oca-docs/fgij/fg.htm?mol=5GI4 FirstGlance]. <br> | + | <table><tr><td colspan='2'>[[5gi4]] is a 2 chain structure with sequence from [https://en.wikipedia.org/wiki/Escherichia_coli_K-12 Escherichia coli K-12]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=5GI4 OCA]. For a <b>guided tour on the structure components</b> use [https://proteopedia.org/fgij/fg.htm?mol=5GI4 FirstGlance]. <br> |
- | </td></tr><tr id='gene'><td class="sblockLbl"><b>[[Gene|Gene:]]</b></td><td class="sblockDat">deaD, csdA, mssB, rhlD, b3162, JW5531 ([http://www.ncbi.nlm.nih.gov/Taxonomy/Browser/wwwtax.cgi?mode=Info&srchmode=5&id=83333 ECOLI])</td></tr> | + | </td></tr><tr id='method'><td class="sblockLbl"><b>[[Empirical_models|Method:]]</b></td><td class="sblockDat" id="methodDat">X-ray diffraction, [[Resolution|Resolution]] 2.244Å</td></tr> |
- | <tr id='activity'><td class="sblockLbl"><b>Activity:</b></td><td class="sblockDat"><span class='plainlinks'>[http://en.wikipedia.org/wiki/RNA_helicase RNA helicase], with EC number [http://www.brenda-enzymes.info/php/result_flat.php4?ecno=3.6.4.13 3.6.4.13] </span></td></tr>
| + | <tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[https://proteopedia.org/fgij/fg.htm?mol=5gi4 FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=5gi4 OCA], [https://pdbe.org/5gi4 PDBe], [https://www.rcsb.org/pdb/explore.do?structureId=5gi4 RCSB], [https://www.ebi.ac.uk/pdbsum/5gi4 PDBsum], [https://prosat.h-its.org/prosat/prosatexe?pdbcode=5gi4 ProSAT]</span></td></tr> |
- | <tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[http://oca.weizmann.ac.il/oca-docs/fgij/fg.htm?mol=5gi4 FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=5gi4 OCA], [http://pdbe.org/5gi4 PDBe], [http://www.rcsb.org/pdb/explore.do?structureId=5gi4 RCSB], [http://www.ebi.ac.uk/pdbsum/5gi4 PDBsum], [http://prosat.h-its.org/prosat/prosatexe?pdbcode=5gi4 ProSAT]</span></td></tr> | + | |
| </table> | | </table> |
| == Function == | | == Function == |
- | [[http://www.uniprot.org/uniprot/DEAD_ECOLI DEAD_ECOLI]] DEAD-box RNA helicase involved in various cellular processes at low temperature, including ribosome biogenesis, mRNA degradation and translation initiation. Exhibits RNA-stimulated ATP hydrolysis and RNA unwinding activity at low temperature. Involved in 50S ribosomal subunit assembly, acting after SrmB, and could also play a role in the biogenesis of the 30S ribosomal subunit. In addition, is involved in mRNA decay, via formation of a cold-shock degradosome with RNase E. Also stimulates translation of some mRNAs, probably at the level of initiation.[HAMAP-Rule:MF_00964]<ref>PMID:10216955</ref> <ref>PMID:15148362</ref> <ref>PMID:15196029</ref> <ref>PMID:15554978</ref> <ref>PMID:17259309</ref> <ref>PMID:8552679</ref> | + | [https://www.uniprot.org/uniprot/DEAD_ECOLI DEAD_ECOLI] DEAD-box RNA helicase involved in various cellular processes at low temperature, including ribosome biogenesis, mRNA degradation and translation initiation. Exhibits RNA-stimulated ATP hydrolysis and RNA unwinding activity at low temperature. Involved in 50S ribosomal subunit assembly, acting after SrmB, and could also play a role in the biogenesis of the 30S ribosomal subunit. In addition, is involved in mRNA decay, via formation of a cold-shock degradosome with RNase E. Also stimulates translation of some mRNAs, probably at the level of initiation.[HAMAP-Rule:MF_00964]<ref>PMID:10216955</ref> <ref>PMID:15148362</ref> <ref>PMID:15196029</ref> <ref>PMID:15554978</ref> <ref>PMID:17259309</ref> <ref>PMID:8552679</ref> |
- | <div style="background-color:#fffaf0;">
| + | |
- | == Publication Abstract from PubMed ==
| + | |
- | CsdA has been proposed to be essential for the biogenesis of ribosome and gene regulation after cold shock. However, the structure of CsdA and the function of its long C-terminal regions are still unclear. Here, we solved all of the domain structures of CsdA and found two previously uncharacterized auxiliary domains: a dimerization domain (DD) and an RNA-binding domain (RBD). Small-angle X-ray scattering experiments helped to track the conformational flexibilities of the helicase core domains and C-terminal regions. Biochemical assays revealed that DD is indispensable for stabilizing the CsdA dimeric structure. We also demonstrate for the first time that CsdA functions as a stable dimer at low temperature. The C-terminal regions are critical for RNA binding and efficient enzymatic activities. CsdA_RBD could specifically bind to the regions with a preference for single-stranded G-rich RNA, which may help to bring the helicase core to unwind the adjacent duplex.
| + | |
- | | + | |
- | Insights into the Structure of Dimeric RNA Helicase CsdA and Indispensable Role of Its C-Terminal Regions.,Xu L, Wang L, Peng J, Li F, Wu L, Zhang B, Lv M, Zhang J, Gong Q, Zhang R, Zuo X, Zhang Z, Wu J, Tang Y, Shi Y Structure. 2017 Dec 5;25(12):1795-1808.e5. doi: 10.1016/j.str.2017.09.013. Epub, 2017 Oct 26. PMID:29107486<ref>PMID:29107486</ref>
| + | |
- | | + | |
- | From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.<br>
| + | |
- | </div>
| + | |
- | <div class="pdbe-citations 5gi4" style="background-color:#fffaf0;"></div>
| + | |
| | | |
| ==See Also== | | ==See Also== |
- | *[[Helicase|Helicase]] | + | *[[Helicase 3D structures|Helicase 3D structures]] |
| == References == | | == References == |
| <references/> | | <references/> |
| __TOC__ | | __TOC__ |
| </StructureSection> | | </StructureSection> |
- | [[Category: Ecoli]] | + | [[Category: Escherichia coli K-12]] |
- | [[Category: RNA helicase]] | + | [[Category: Large Structures]] |
- | [[Category: Li, F]] | + | [[Category: Li F]] |
- | [[Category: Shi, Y]] | + | [[Category: Shi Y]] |
- | [[Category: Wang, L]] | + | [[Category: Wang L]] |
- | [[Category: Wu, L]] | + | [[Category: Wu L]] |
- | [[Category: Xu, L]] | + | [[Category: Xu L]] |
- | [[Category: Dimer]]
| + | |
- | [[Category: Hydrolase]]
| + | |
- | [[Category: Reca-like]]
| + | |
- | [[Category: Rna helicase]]
| + | |
- | [[Category: Wild type]]
| + | |
| Structural highlights
Function
DEAD_ECOLI DEAD-box RNA helicase involved in various cellular processes at low temperature, including ribosome biogenesis, mRNA degradation and translation initiation. Exhibits RNA-stimulated ATP hydrolysis and RNA unwinding activity at low temperature. Involved in 50S ribosomal subunit assembly, acting after SrmB, and could also play a role in the biogenesis of the 30S ribosomal subunit. In addition, is involved in mRNA decay, via formation of a cold-shock degradosome with RNase E. Also stimulates translation of some mRNAs, probably at the level of initiation.[HAMAP-Rule:MF_00964][1] [2] [3] [4] [5] [6]
See Also
References
- ↑ Lu J, Aoki H, Ganoza MC. Molecular characterization of a prokaryotic translation factor homologous to the eukaryotic initiation factor eIF4A. Int J Biochem Cell Biol. 1999 Jan;31(1):215-29. PMID:10216955
- ↑ Charollais J, Dreyfus M, Iost I. CsdA, a cold-shock RNA helicase from Escherichia coli, is involved in the biogenesis of 50S ribosomal subunit. Nucleic Acids Res. 2004 May 17;32(9):2751-9. Print 2004. PMID:15148362 doi:10.1093/nar/gkh603
- ↑ Bizebard T, Ferlenghi I, Iost I, Dreyfus M. Studies on three E. coli DEAD-box helicases point to an unwinding mechanism different from that of model DNA helicases. Biochemistry. 2004 Jun 22;43(24):7857-66. PMID:15196029 doi:10.1021/bi049852s
- ↑ Prud'homme-Genereux A, Beran RK, Iost I, Ramey CS, Mackie GA, Simons RW. Physical and functional interactions among RNase E, polynucleotide phosphorylase and the cold-shock protein, CsdA: evidence for a 'cold shock degradosome'. Mol Microbiol. 2004 Dec;54(5):1409-21. PMID:15554978 doi:http://dx.doi.org/10.1111/j.1365-2958.2004.04360.x
- ↑ Turner AM, Love CF, Alexander RW, Jones PG. Mutational analysis of the Escherichia coli DEAD box protein CsdA. J Bacteriol. 2007 Apr;189(7):2769-76. Epub 2007 Jan 26. PMID:17259309 doi:http://dx.doi.org/10.1128/JB.01509-06
- ↑ Jones PG, Mitta M, Kim Y, Jiang W, Inouye M. Cold shock induces a major ribosomal-associated protein that unwinds double-stranded RNA in Escherichia coli. Proc Natl Acad Sci U S A. 1996 Jan 9;93(1):76-80. PMID:8552679
|