6qiz
From Proteopedia
(Difference between revisions)
(New page: '''Unreleased structure''' The entry 6qiz is ON HOLD until Paper Publication Authors: Romero, A., Ruiz, F.M. Description: CI-2, conformation 2 Category: Unreleased Structures [[Cat...) |
|||
(2 intermediate revisions not shown.) | |||
Line 1: | Line 1: | ||
- | '''Unreleased structure''' | ||
- | + | ==CI-2, conformation 2== | |
+ | <StructureSection load='6qiz' size='340' side='right'caption='[[6qiz]], [[Resolution|resolution]] 1.65Å' scene=''> | ||
+ | == Structural highlights == | ||
+ | <table><tr><td colspan='2'>[[6qiz]] is a 1 chain structure with sequence from [https://en.wikipedia.org/wiki/Hordeum_vulgare Hordeum vulgare]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=6QIZ OCA]. For a <b>guided tour on the structure components</b> use [https://proteopedia.org/fgij/fg.htm?mol=6QIZ FirstGlance]. <br> | ||
+ | </td></tr><tr id='method'><td class="sblockLbl"><b>[[Empirical_models|Method:]]</b></td><td class="sblockDat" id="methodDat">X-ray diffraction, [[Resolution|Resolution]] 1.65Å</td></tr> | ||
+ | <tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[https://proteopedia.org/fgij/fg.htm?mol=6qiz FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=6qiz OCA], [https://pdbe.org/6qiz PDBe], [https://www.rcsb.org/pdb/explore.do?structureId=6qiz RCSB], [https://www.ebi.ac.uk/pdbsum/6qiz PDBsum], [https://prosat.h-its.org/prosat/prosatexe?pdbcode=6qiz ProSAT]</span></td></tr> | ||
+ | </table> | ||
+ | == Function == | ||
+ | [https://www.uniprot.org/uniprot/ICI2_HORVU ICI2_HORVU] Inhibits both subtilisin and chymotrypsin. | ||
+ | <div style="background-color:#fffaf0;"> | ||
+ | == Publication Abstract from PubMed == | ||
+ | The macromolecular machines of life use allosteric control to self-assemble, dissociate and change shape in response to signals. Despite enormous interest, the design of nanoscale allosteric assemblies has proven tremendously challenging. Here we present a proof of concept of allosteric assembly in which an engineered fold switch on the protein monomer triggers or blocks assembly. Our design is based on the hyper-stable, naturally monomeric protein CI2, a paradigm of simple two-state folding, and the toroidal arrangement with 6-fold symmetry that it only adopts in crystalline form. We engineer CI2 to enable a switch between the native and an alternate, latent fold that self-assembles onto hexagonal toroidal particles by exposing a favorable inter-monomer interface. The assembly is controlled on demand via the competing effects of temperature and a designed short peptide. These findings unveil a remarkable potential for structural metamorphosis in proteins and demonstrate key principles for engineering protein-based nanomachinery. | ||
- | + | Engineering protein assemblies with allosteric control via monomer fold-switching.,Campos LA, Sharma R, Alvira S, Ruiz FM, Ibarra-Molero B, Sadqi M, Alfonso C, Rivas G, Sanchez-Ruiz JM, Romero Garrido A, Valpuesta JM, Munoz V Nat Commun. 2019 Dec 13;10(1):5703. doi: 10.1038/s41467-019-13686-1. PMID:31836707<ref>PMID:31836707</ref> | |
- | + | From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.<br> | |
- | [[Category: | + | </div> |
- | [[Category: Romero | + | <div class="pdbe-citations 6qiz" style="background-color:#fffaf0;"></div> |
- | [[Category: Ruiz | + | |
+ | ==See Also== | ||
+ | *[[Chymotrypsin inhibitor 3D structures|Chymotrypsin inhibitor 3D structures]] | ||
+ | == References == | ||
+ | <references/> | ||
+ | __TOC__ | ||
+ | </StructureSection> | ||
+ | [[Category: Hordeum vulgare]] | ||
+ | [[Category: Large Structures]] | ||
+ | [[Category: Romero A]] | ||
+ | [[Category: Ruiz FM]] |
Current revision
CI-2, conformation 2
|