Sandbox S12
From Proteopedia
(Difference between revisions)
(One intermediate revision not shown.) | |||
Line 1: | Line 1: | ||
<StructureSection load='2AFO' size='329' side='right' caption='Caption for this structure' scene=''> | <StructureSection load='2AFO' size='329' side='right' caption='Caption for this structure' scene=''> | ||
- | N-terminal pyroglutamate (pGlu) formation from its glutaminyl (or glutamyl) precursor is required in the maturation of numerous bioactive peptides. The aberrant formation of pGlu may be related to several pathological processes, such as osteoporosis and amyloidotic diseases. This N-terminal cyclization reaction, once thought to proceed spontaneously, is greatly facilitated by the enzyme glutaminyl cyclase (QC). To probe this important but poorly understood modification, we present here the structure of human QC in free form and bound to a substrate and three imidazole-derived inhibitors. The structure reveals an alpha/beta scaffold akin to that of two-zinc exopeptidases but with several insertions and deletions, particularly in the active-site region. The relatively closed active site displays alternate conformations due to the different indole orientations of Trp-207, <scene name='80/807429/Residues_90-100/1'>residues 90-100</scene> resulting in two substrate (glutamine t-butyl ester)-binding modes. The single zinc ion in the active site is coordinated to three conserved residues and one water molecule, which is replaced by an imidazole nitrogen upon binding of the inhibitors. <scene name='80/807429/Residues_100-120/2'>residues 100-120</scene> with structural and kinetic analyses of several active-site-mutant enzymes, a catalysis mechanism of the formation of protein N-terminal pGlu is proposed. <scene name='80/807429/Residues_83-90/1'>Residues 83-90</scene> Our results provide a structural basis for the rational design of inhibitors against QC-associated disorders.<ref><http://www.rcsb.org/structure/2AFO><ref> . | + | N-terminal pyroglutamate (pGlu) formation from its glutaminyl (or glutamyl) precursor is required in the maturation of numerous bioactive peptides. The aberrant formation of pGlu may be related to several pathological processes, such as osteoporosis and amyloidotic diseases. This N-terminal cyclization reaction, once thought to proceed spontaneously, is greatly facilitated by the enzyme glutaminyl cyclase (QC). To probe this important but poorly understood modification, we present here the structure of human QC in free form and bound to a substrate and three imidazole-derived inhibitors. The structure reveals an alpha/beta scaffold akin to that of two-zinc exopeptidases but with several insertions and deletions, particularly in the active-site region. The relatively closed active site displays alternate conformations due to the different indole orientations of Trp-207, <scene name='80/807429/Residues_90-100/1'>residues 90-100</scene> resulting in two substrate (glutamine t-butyl ester)-binding modes. The single zinc ion in the active site is coordinated to three conserved residues and one water molecule, which is replaced by an imidazole nitrogen upon binding of the inhibitors. <scene name='80/807429/Residues_100-120/2'>residues 100-120</scene> with structural and kinetic analyses of several active-site-mutant enzymes, a catalysis mechanism of the formation of protein N-terminal pGlu is proposed. <scene name='80/807429/Residues_83-90/1'>Residues 83-90</scene> Our results provide a structural basis for the rational design of inhibitors against QC-associated disorders.<ref><http://www.rcsb.org/structure/2AFO><ref>. |
== Function == | == Function == | ||
Line 11: | Line 11: | ||
== Structural highlights == | == Structural highlights == | ||
- | [ | + | [[GFP]] |
</StructureSection> | </StructureSection> | ||
== References == | == References == | ||
<references/> | <references/> |
Current revision
|
References
- ↑ <http://www.rcsb.org/structure/2AFO><ref>. == Function == == Disease == == Relevance == == Structural highlights == [[GFP]] </li></ol></ref>