|
|
(One intermediate revision not shown.) |
Line 1: |
Line 1: |
| | | |
| ==SeMet-labelled HcgF from Methanocaldococcus jannaschii== | | ==SeMet-labelled HcgF from Methanocaldococcus jannaschii== |
- | <StructureSection load='3wva' size='340' side='right' caption='[[3wva]], [[Resolution|resolution]] 1.40Å' scene=''> | + | <StructureSection load='3wva' size='340' side='right'caption='[[3wva]], [[Resolution|resolution]] 1.40Å' scene=''> |
| == Structural highlights == | | == Structural highlights == |
- | <table><tr><td colspan='2'>[[3wva]] is a 2 chain structure with sequence from [http://en.wikipedia.org/wiki/Metja Metja]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=3WVA OCA]. For a <b>guided tour on the structure components</b> use [http://oca.weizmann.ac.il/oca-docs/fgij/fg.htm?mol=3WVA FirstGlance]. <br> | + | <table><tr><td colspan='2'>[[3wva]] is a 2 chain structure with sequence from [https://en.wikipedia.org/wiki/Methanocaldococcus_jannaschii_DSM_2661 Methanocaldococcus jannaschii DSM 2661]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=3WVA OCA]. For a <b>guided tour on the structure components</b> use [https://proteopedia.org/fgij/fg.htm?mol=3WVA FirstGlance]. <br> |
- | </td></tr><tr id='NonStdRes'><td class="sblockLbl"><b>[[Non-Standard_Residue|NonStd Res:]]</b></td><td class="sblockDat"><scene name='pdbligand=MSE:SELENOMETHIONINE'>MSE</scene></td></tr> | + | </td></tr><tr id='method'><td class="sblockLbl"><b>[[Empirical_models|Method:]]</b></td><td class="sblockDat" id="methodDat">X-ray diffraction, [[Resolution|Resolution]] 1.4Å</td></tr> |
- | <tr id='related'><td class="sblockLbl"><b>[[Related_structure|Related:]]</b></td><td class="sblockDat">[[3wv7|3wv7]], [[3wv8|3wv8]], [[3wv9|3wv9]], [[3wvb|3wvb]], [[3wvc|3wvc]]</td></tr>
| + | <tr id='ligand'><td class="sblockLbl"><b>[[Ligand|Ligands:]]</b></td><td class="sblockDat" id="ligandDat"><scene name='pdbligand=MSE:SELENOMETHIONINE'>MSE</scene></td></tr> |
- | <tr id='gene'><td class="sblockLbl"><b>[[Gene|Gene:]]</b></td><td class="sblockDat">MJ1251 ([http://www.ncbi.nlm.nih.gov/Taxonomy/Browser/wwwtax.cgi?mode=Info&srchmode=5&id=243232 METJA])</td></tr> | + | <tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[https://proteopedia.org/fgij/fg.htm?mol=3wva FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=3wva OCA], [https://pdbe.org/3wva PDBe], [https://www.rcsb.org/pdb/explore.do?structureId=3wva RCSB], [https://www.ebi.ac.uk/pdbsum/3wva PDBsum], [https://prosat.h-its.org/prosat/prosatexe?pdbcode=3wva ProSAT]</span></td></tr> |
- | <tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[http://oca.weizmann.ac.il/oca-docs/fgij/fg.htm?mol=3wva FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=3wva OCA], [http://pdbe.org/3wva PDBe], [http://www.rcsb.org/pdb/explore.do?structureId=3wva RCSB], [http://www.ebi.ac.uk/pdbsum/3wva PDBsum], [http://prosat.h-its.org/prosat/prosatexe?pdbcode=3wva ProSAT]</span></td></tr> | + | |
| </table> | | </table> |
| <div style="background-color:#fffaf0;"> | | <div style="background-color:#fffaf0;"> |
Line 22: |
Line 21: |
| __TOC__ | | __TOC__ |
| </StructureSection> | | </StructureSection> |
- | [[Category: Metja]] | + | [[Category: Large Structures]] |
- | [[Category: Ermler, U]] | + | [[Category: Methanocaldococcus jannaschii DSM 2661]] |
- | [[Category: Fujishiro, T]] | + | [[Category: Ermler U]] |
- | [[Category: Shima, S]] | + | [[Category: Fujishiro T]] |
- | [[Category: Hydrolase]] | + | [[Category: Shima S]] |
- | [[Category: Thioesterase]]
| + | |
| Structural highlights
Publication Abstract from PubMed
The iron-guanylylpyridinol (FeGP) cofactor of [Fe]-hydrogenase contains a prominent iron centre with an acyl-Fe bond and is the only acyl-organometallic iron compound found in nature. Here, we identify the functions of HcgE and HcgF, involved in the biosynthesis of the FeGP cofactor using structure-to-function strategy. Analysis of the HcgE and HcgF crystal structures with and without bound substrates suggest that HcgE catalyses the adenylylation of the carboxy group of guanylylpyridinol (GP) to afford AMP-GP, and subsequently HcgF catalyses the transesterification of AMP-GP to afford a Cys (HcgF)-S-GP thioester. Both enzymatic reactions are confirmed by in vitro assays. The structural data also offer plausible catalytic mechanisms. This strategy of thioester activation corresponds to that used for ubiquitin activation, a key event in the regulation of multiple cellular processes. It further implicates a nucleophilic attack onto the acyl carbon presumably via an electron-rich Fe(0)- or Fe(I)-carbonyl complex in the Fe-acyl formation.
Protein-pyridinol thioester precursor for biosynthesis of the organometallic acyl-iron ligand in [Fe]-hydrogenase cofactor.,Fujishiro T, Kahnt J, Ermler U, Shima S Nat Commun. 2015 Apr 17;6:6895. doi: 10.1038/ncomms7895. PMID:25882909[1]
From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.
References
- ↑ Fujishiro T, Kahnt J, Ermler U, Shima S. Protein-pyridinol thioester precursor for biosynthesis of the organometallic acyl-iron ligand in [Fe]-hydrogenase cofactor. Nat Commun. 2015 Apr 17;6:6895. doi: 10.1038/ncomms7895. PMID:25882909 doi:http://dx.doi.org/10.1038/ncomms7895
|