|
|
(One intermediate revision not shown.) |
Line 1: |
Line 1: |
| | | |
| ==Engineering the active site of a GH43 glycoside hydrolase generates a biotechnologically significant enzyme that displays both endo- xylanase and exo-arabinofuranosidase activity== | | ==Engineering the active site of a GH43 glycoside hydrolase generates a biotechnologically significant enzyme that displays both endo- xylanase and exo-arabinofuranosidase activity== |
- | <StructureSection load='3zxj' size='340' side='right' caption='[[3zxj]], [[Resolution|resolution]] 1.85Å' scene=''> | + | <StructureSection load='3zxj' size='340' side='right'caption='[[3zxj]], [[Resolution|resolution]] 1.85Å' scene=''> |
| == Structural highlights == | | == Structural highlights == |
- | <table><tr><td colspan='2'>[[3zxj]] is a 2 chain structure with sequence from [http://en.wikipedia.org/wiki/Atcc_16454 Atcc 16454]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=3ZXJ OCA]. For a <b>guided tour on the structure components</b> use [http://oca.weizmann.ac.il/oca-docs/fgij/fg.htm?mol=3ZXJ FirstGlance]. <br> | + | <table><tr><td colspan='2'>[[3zxj]] is a 2 chain structure with sequence from [https://en.wikipedia.org/wiki/Humicola_insolens Humicola insolens]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=3ZXJ OCA]. For a <b>guided tour on the structure components</b> use [https://proteopedia.org/fgij/fg.htm?mol=3ZXJ FirstGlance]. <br> |
- | </td></tr><tr id='ligand'><td class="sblockLbl"><b>[[Ligand|Ligands:]]</b></td><td class="sblockDat"><scene name='pdbligand=BTB:2-[BIS-(2-HYDROXY-ETHYL)-AMINO]-2-HYDROXYMETHYL-PROPANE-1,3-DIOL'>BTB</scene>, <scene name='pdbligand=PEG:DI(HYDROXYETHYL)ETHER'>PEG</scene>, <scene name='pdbligand=SO4:SULFATE+ION'>SO4</scene></td></tr> | + | </td></tr><tr id='method'><td class="sblockLbl"><b>[[Empirical_models|Method:]]</b></td><td class="sblockDat" id="methodDat">X-ray diffraction, [[Resolution|Resolution]] 1.85Å</td></tr> |
- | <tr id='NonStdRes'><td class="sblockLbl"><b>[[Non-Standard_Residue|NonStd Res:]]</b></td><td class="sblockDat"><scene name='pdbligand=MSE:SELENOMETHIONINE'>MSE</scene></td></tr> | + | <tr id='ligand'><td class="sblockLbl"><b>[[Ligand|Ligands:]]</b></td><td class="sblockDat" id="ligandDat"><scene name='pdbligand=BTB:2-[BIS-(2-HYDROXY-ETHYL)-AMINO]-2-HYDROXYMETHYL-PROPANE-1,3-DIOL'>BTB</scene>, <scene name='pdbligand=MSE:SELENOMETHIONINE'>MSE</scene>, <scene name='pdbligand=PEG:DI(HYDROXYETHYL)ETHER'>PEG</scene>, <scene name='pdbligand=SO4:SULFATE+ION'>SO4</scene></td></tr> |
- | <tr id='related'><td class="sblockLbl"><b>[[Related_structure|Related:]]</b></td><td class="sblockDat">[[3zxk|3zxk]], [[3zxl|3zxl]]</td></tr>
| + | <tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[https://proteopedia.org/fgij/fg.htm?mol=3zxj FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=3zxj OCA], [https://pdbe.org/3zxj PDBe], [https://www.rcsb.org/pdb/explore.do?structureId=3zxj RCSB], [https://www.ebi.ac.uk/pdbsum/3zxj PDBsum], [https://prosat.h-its.org/prosat/prosatexe?pdbcode=3zxj ProSAT]</span></td></tr> |
- | <tr id='activity'><td class="sblockLbl"><b>Activity:</b></td><td class="sblockDat"><span class='plainlinks'>[http://en.wikipedia.org/wiki/Non-reducing_end_alpha-L-arabinofuranosidase Non-reducing end alpha-L-arabinofuranosidase], with EC number [http://www.brenda-enzymes.info/php/result_flat.php4?ecno=3.2.1.55 3.2.1.55] </span></td></tr>
| + | |
- | <tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[http://oca.weizmann.ac.il/oca-docs/fgij/fg.htm?mol=3zxj FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=3zxj OCA], [http://pdbe.org/3zxj PDBe], [http://www.rcsb.org/pdb/explore.do?structureId=3zxj RCSB], [http://www.ebi.ac.uk/pdbsum/3zxj PDBsum], [http://prosat.h-its.org/prosat/prosatexe?pdbcode=3zxj ProSAT]</span></td></tr> | + | |
| </table> | | </table> |
| <div style="background-color:#fffaf0;"> | | <div style="background-color:#fffaf0;"> |
Line 23: |
Line 21: |
| __TOC__ | | __TOC__ |
| </StructureSection> | | </StructureSection> |
- | [[Category: Atcc 16454]] | + | [[Category: Humicola insolens]] |
- | [[Category: Non-reducing end alpha-L-arabinofuranosidase]] | + | [[Category: Large Structures]] |
- | [[Category: Gilbert, H J]] | + | [[Category: Gilbert HJ]] |
- | [[Category: Jackson, A]] | + | [[Category: Jackson A]] |
- | [[Category: Krogh, K B.R M]] | + | [[Category: Krogh KBRM]] |
- | [[Category: Lewis, R J]] | + | [[Category: Lewis RJ]] |
- | [[Category: Marles-Wright, J]] | + | [[Category: Marles-Wright J]] |
- | [[Category: McKee, L S]] | + | [[Category: McKee LS]] |
- | [[Category: Pena, M J]] | + | [[Category: Pena MJ]] |
- | [[Category: Rogowski, A]] | + | [[Category: Rogowski A]] |
- | [[Category: Skjot, M]] | + | [[Category: Skjot M]] |
- | [[Category: Vikso-Nielsen, A]] | + | [[Category: Vikso-Nielsen A]] |
- | [[Category: York, W S]] | + | [[Category: York WS]] |
- | [[Category: Arabinosidase]]
| + | |
- | [[Category: Hydrolase]]
| + | |
- | [[Category: Xylosidase]]
| + | |
| Structural highlights
Publication Abstract from PubMed
The degradation of the plant cell wall by glycoside hydrolases is central to environmentally sustainable industries. The major polysaccharides of the plant cell wall are cellulose and xylan, a highly decorated beta-1,4-xylopyranose polymer. Glycoside hydrolases displaying multiple catalytic functions may simplify the enzymes required to degrade plant cell walls, increasing the industrial potential of these composite structures. Here we test the hypothesis that glycoside hydrolase family 43 (GH43) provides a suitable scaffold for introducing additional catalytic functions into enzymes that target complex structures in the plant cell wall. We report the crystal structure of Humicola insolens AXHd3 (HiAXHd3), a GH43 arabinofuranosidase that hydrolyses O3-linked arabinose of doubly substituted xylans, a feature of the polysaccharide that is recalcitrant to degradation. HiAXHd3 displays an N-terminal five-bladed beta-propeller domain and a C-terminal beta-sandwich domain. The interface between the domains comprises a xylan binding cleft that houses the active site pocket. Substrate specificity is conferred by a shallow arabinose binding pocket adjacent to the deep active site pocket, and through the orientation of the xylan backbone. Modification of the rim of the active site introduces endo-xylanase activity, whereas the resultant enzyme variant, Y166A, retains arabinofuranosidase activity. These data show that the active site of HiAXHd3 is tuned to hydrolyse arabinofuranosyl or xylosyl linkages, and it is the topology of the distal regions of the substrate binding surface that confers specificity. This report demonstrates that GH43 provides a platform for generating bespoke multifunctional enzymes that target industrially significant complex substrates, exemplified by the plant cell wall.
Introducing endo-xylanase activity into an exo-acting arabinofuranosidase that targets side chains.,McKee LS, Pena MJ, Rogowski A, Jackson A, Lewis RJ, York WS, Krogh KB, Vikso-Nielsen A, Skjot M, Gilbert HJ, Marles-Wright J Proc Natl Acad Sci U S A. 2012 Apr 24;109(17):6537-42. Epub 2012 Apr 6. PMID:22492980[1]
From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.
References
- ↑ McKee LS, Pena MJ, Rogowski A, Jackson A, Lewis RJ, York WS, Krogh KB, Vikso-Nielsen A, Skjot M, Gilbert HJ, Marles-Wright J. Introducing endo-xylanase activity into an exo-acting arabinofuranosidase that targets side chains. Proc Natl Acad Sci U S A. 2012 Apr 24;109(17):6537-42. Epub 2012 Apr 6. PMID:22492980 doi:10.1073/pnas.1117686109
|