We apologize for Proteopedia being slow to respond. For the past two years, a new implementation of Proteopedia has been being built. Soon, it will replace this 18-year old system. All existing content will be moved to the new system at a date that will be announced here.

6o91

From Proteopedia

(Difference between revisions)
Jump to: navigation, search
(New page: '''Unreleased structure''' The entry 6o91 is ON HOLD Authors: Plapp, B.V. Description: Horse liver L57F alcohol dehydrogenase complexed with NAD and pentafluorobenzyl alcohol [[Categor...)
Current revision (07:06, 11 October 2023) (edit) (undo)
 
(4 intermediate revisions not shown.)
Line 1: Line 1:
-
'''Unreleased structure'''
 
-
The entry 6o91 is ON HOLD
+
==Horse liver L57F alcohol dehydrogenase complexed with NAD and pentafluorobenzyl alcohol==
 +
<StructureSection load='6o91' size='340' side='right'caption='[[6o91]], [[Resolution|resolution]] 1.10&Aring;' scene=''>
 +
== Structural highlights ==
 +
<table><tr><td colspan='2'>[[6o91]] is a 2 chain structure with sequence from [https://en.wikipedia.org/wiki/Equus_caballus Equus caballus]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=6O91 OCA]. For a <b>guided tour on the structure components</b> use [https://proteopedia.org/fgij/fg.htm?mol=6O91 FirstGlance]. <br>
 +
</td></tr><tr id='method'><td class="sblockLbl"><b>[[Empirical_models|Method:]]</b></td><td class="sblockDat" id="methodDat">X-ray diffraction, [[Resolution|Resolution]] 1.1&#8491;</td></tr>
 +
<tr id='ligand'><td class="sblockLbl"><b>[[Ligand|Ligands:]]</b></td><td class="sblockDat" id="ligandDat"><scene name='pdbligand=MRD:(4R)-2-METHYLPENTANE-2,4-DIOL'>MRD</scene>, <scene name='pdbligand=NAJ:NICOTINAMIDE-ADENINE-DINUCLEOTIDE+(ACIDIC+FORM)'>NAJ</scene>, <scene name='pdbligand=PFB:2,3,4,5,6-PENTAFLUOROBENZYL+ALCOHOL'>PFB</scene>, <scene name='pdbligand=ZN:ZINC+ION'>ZN</scene></td></tr>
 +
<tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[https://proteopedia.org/fgij/fg.htm?mol=6o91 FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=6o91 OCA], [https://pdbe.org/6o91 PDBe], [https://www.rcsb.org/pdb/explore.do?structureId=6o91 RCSB], [https://www.ebi.ac.uk/pdbsum/6o91 PDBsum], [https://prosat.h-its.org/prosat/prosatexe?pdbcode=6o91 ProSAT]</span></td></tr>
 +
</table>
 +
== Function ==
 +
[https://www.uniprot.org/uniprot/ADH1E_HORSE ADH1E_HORSE]
 +
<div style="background-color:#fffaf0;">
 +
== Publication Abstract from PubMed ==
 +
Previous studies showed that the L57F and F93W alcohol dehydrogenases catalyze the oxidation of benzyl alcohol with some quantum mechanical hydrogen tunneling, whereas the V203A enzyme has diminished tunneling. Here, steady-state kinetics for the L57F and F93W enzymes were studied, and microscopic rate constants for the ordered bi-bi mechanism were estimated from simulations of transient kinetics for the S48T, F93A, S48T/F93A, F93W, and L57F enzymes. Catalytic efficiencies for benzyl alcohol oxidation (V1/EtKb) vary over a range of approximately 100-fold for the less active enzymes up to the L57F enzyme and are mostly associated with the binding of alcohol rather than the rate constants for hydride transfer. In contrast, catalytic efficiencies for benzaldehyde reduction (V2/EtKp) are approximately 500-fold higher for the L57F enzyme than for the less active enzymes and are mostly associated with the rate constants for hydride transfer. Atomic-resolution structures (1.1 A) for the F93W and L57F enzymes complexed with NAD(+) and 2,3,4,5,6-pentafluorobenzyl alcohol or 2,2,2-trifluoroethanol are almost identical to previous structures for the wild-type, S48T, and V203A enzymes. Least-squares refinement with SHELXL shows that the nicotinamide ring is slightly strained in all complexes and that the apparent donor-acceptor distances from C4N of NAD to C7 of pentafluorobenzyl alcohol range from 3.28 to 3.49 A (+/-0.02 A) and are not correlated with the rate constants for hydride transfer or hydrogen tunneling. How the substitutions affect the dynamics of reorganization during hydrogen transfer and the extent of tunneling remain to be determined.
-
Authors: Plapp, B.V.
+
Substitutions of Amino Acid Residues in the Substrate Binding Site of Horse Liver Alcohol Dehydrogenase Have Small Effects on the Structures but Significantly Affect Catalysis of Hydrogen Transfer.,Kim K, Plapp BV Biochemistry. 2020 Feb 10. doi: 10.1021/acs.biochem.9b01074. PMID:31994873<ref>PMID:31994873</ref>
-
Description: Horse liver L57F alcohol dehydrogenase complexed with NAD and pentafluorobenzyl alcohol
+
From MEDLINE&reg;/PubMed&reg;, a database of the U.S. National Library of Medicine.<br>
-
[[Category: Unreleased Structures]]
+
</div>
-
[[Category: Plapp, B.V]]
+
<div class="pdbe-citations 6o91" style="background-color:#fffaf0;"></div>
 +
 
 +
==See Also==
 +
*[[Alcohol dehydrogenase 3D structures|Alcohol dehydrogenase 3D structures]]
 +
== References ==
 +
<references/>
 +
__TOC__
 +
</StructureSection>
 +
[[Category: Equus caballus]]
 +
[[Category: Large Structures]]
 +
[[Category: Plapp BV]]

Current revision

Horse liver L57F alcohol dehydrogenase complexed with NAD and pentafluorobenzyl alcohol

PDB ID 6o91

Drag the structure with the mouse to rotate

Proteopedia Page Contributors and Editors (what is this?)

OCA

Personal tools