|
|
(One intermediate revision not shown.) |
Line 3: |
Line 3: |
| <StructureSection load='6qe6' size='340' side='right'caption='[[6qe6]], [[Resolution|resolution]] 2.36Å' scene=''> | | <StructureSection load='6qe6' size='340' side='right'caption='[[6qe6]], [[Resolution|resolution]] 2.36Å' scene=''> |
| == Structural highlights == | | == Structural highlights == |
- | <table><tr><td colspan='2'>[[6qe6]] is a 2 chain structure. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=6QE6 OCA]. For a <b>guided tour on the structure components</b> use [http://oca.weizmann.ac.il/oca-docs/fgij/fg.htm?mol=6QE6 FirstGlance]. <br> | + | <table><tr><td colspan='2'>[[6qe6]] is a 2 chain structure with sequence from [https://en.wikipedia.org/wiki/Mycoplasma_capricolum_subsp._capricolum Mycoplasma capricolum subsp. capricolum]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=6QE6 OCA]. For a <b>guided tour on the structure components</b> use [https://proteopedia.org/fgij/fg.htm?mol=6QE6 FirstGlance]. <br> |
- | </td></tr><tr id='ligand'><td class="sblockLbl"><b>[[Ligand|Ligands:]]</b></td><td class="sblockDat"><scene name='pdbligand=SAH:S-ADENOSYL-L-HOMOCYSTEINE'>SAH</scene></td></tr> | + | </td></tr><tr id='method'><td class="sblockLbl"><b>[[Empirical_models|Method:]]</b></td><td class="sblockDat" id="methodDat">X-ray diffraction, [[Resolution|Resolution]] 2.36Å</td></tr> |
- | <tr id='activity'><td class="sblockLbl"><b>Activity:</b></td><td class="sblockDat"><span class='plainlinks'>[http://en.wikipedia.org/wiki/tRNA_(adenine(22)-N(1))-methyltransferase tRNA (adenine(22)-N(1))-methyltransferase], with EC number [http://www.brenda-enzymes.info/php/result_flat.php4?ecno=2.1.1.217 2.1.1.217] </span></td></tr> | + | <tr id='ligand'><td class="sblockLbl"><b>[[Ligand|Ligands:]]</b></td><td class="sblockDat" id="ligandDat"><scene name='pdbligand=SAH:S-ADENOSYL-L-HOMOCYSTEINE'>SAH</scene></td></tr> |
- | <tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[http://oca.weizmann.ac.il/oca-docs/fgij/fg.htm?mol=6qe6 FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=6qe6 OCA], [http://pdbe.org/6qe6 PDBe], [http://www.rcsb.org/pdb/explore.do?structureId=6qe6 RCSB], [http://www.ebi.ac.uk/pdbsum/6qe6 PDBsum], [http://prosat.h-its.org/prosat/prosatexe?pdbcode=6qe6 ProSAT]</span></td></tr> | + | <tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[https://proteopedia.org/fgij/fg.htm?mol=6qe6 FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=6qe6 OCA], [https://pdbe.org/6qe6 PDBe], [https://www.rcsb.org/pdb/explore.do?structureId=6qe6 RCSB], [https://www.ebi.ac.uk/pdbsum/6qe6 PDBsum], [https://prosat.h-its.org/prosat/prosatexe?pdbcode=6qe6 ProSAT]</span></td></tr> |
| </table> | | </table> |
| + | == Function == |
| + | [https://www.uniprot.org/uniprot/A0A0C3A3T0_MYCCA A0A0C3A3T0_MYCCA] |
| <div style="background-color:#fffaf0;"> | | <div style="background-color:#fffaf0;"> |
| == Publication Abstract from PubMed == | | == Publication Abstract from PubMed == |
Line 17: |
Line 19: |
| </div> | | </div> |
| <div class="pdbe-citations 6qe6" style="background-color:#fffaf0;"></div> | | <div class="pdbe-citations 6qe6" style="background-color:#fffaf0;"></div> |
| + | |
| + | ==See Also== |
| + | *[[TRNA methyltransferase 3D structures|TRNA methyltransferase 3D structures]] |
| == References == | | == References == |
| <references/> | | <references/> |
Line 22: |
Line 27: |
| </StructureSection> | | </StructureSection> |
| [[Category: Large Structures]] | | [[Category: Large Structures]] |
- | [[Category: Atdjian, C]] | + | [[Category: Mycoplasma capricolum subsp. capricolum]] |
- | [[Category: Barraud, P]] | + | [[Category: Atdjian C]] |
- | [[Category: Brachet, F]] | + | [[Category: Barraud P]] |
- | [[Category: Braud, E]] | + | [[Category: Brachet F]] |
- | [[Category: Catala, M]] | + | [[Category: Braud E]] |
- | [[Category: Droogmans, L]] | + | [[Category: Catala M]] |
- | [[Category: Etheve-Quelquejeu, M]] | + | [[Category: Droogmans L]] |
- | [[Category: Iannazzo, L]] | + | [[Category: Etheve-Quelquejeu M]] |
- | [[Category: Oerum, S]] | + | [[Category: Iannazzo L]] |
- | [[Category: Ponchon, L]] | + | [[Category: Oerum S]] |
- | [[Category: Tisne, C]] | + | [[Category: Ponchon L]] |
- | [[Category: Inhibitor]]
| + | [[Category: Tisne C]] |
- | [[Category: M1a]]
| + | |
- | [[Category: M6a]]
| + | |
- | [[Category: Methyltransferase]]
| + | |
- | [[Category: Rlmj]]
| + | |
- | [[Category: Rna binding]]
| + | |
- | [[Category: Rna mtase]]
| + | |
- | [[Category: Structure]]
| + | |
- | [[Category: Transferase]]
| + | |
- | [[Category: Transition state analogue]]
| + | |
- | [[Category: Trmk]]
| + | |
| Structural highlights
Function
A0A0C3A3T0_MYCCA
Publication Abstract from PubMed
RNA methyltransferases (MTases) catalyse the transfer of a methyl group to their RNA substrates using most-often S-adenosyl-L-methionine (SAM) as cofactor. Only few RNA-bound MTases structures are currently available due to the difficulties in crystallising RNA:protein complexes. The lack of complex structures results in poorly understood RNA recognition patterns and methylation reaction mechanisms. On the contrary, many cofactor-bound MTase structures are available, resulting in well-understood protein:cofactor recognition, that can guide the design of bisubstrate analogues that mimic the state at which both the substrate and the cofactor is bound. Such bisubstrate analogues were recently synthesized for proteins monomethylating the N6-atom of adenine (m(6)A). These proteins include, amongst others, RlmJ in E. coli and METLL3:METT14 and METTL16 in human. As a proof-of-concept, we here test the ability of the bisubstrate analogues to mimic the substrate:cofactor bound state during catalysis by studying their binding to RlmJ using differential scanning fluorimetry, isothermal titration calorimetry and X-ray crystallography. We find that the methylated adenine base binds in the correct pocket, and thus these analogues could potentially be used broadly to study the RNA recognition and catalytic mechanism of m(6)A MTases. Two bisubstrate analogues bind RlmJ with micro-molar affinity, and could serve as starting scaffolds for inhibitor design against m(6)A RNA MTases. The same analogues cause changes in the melting temperature of the m(1)A RNA MTase, TrmK, indicating non-selective protein:compound complex formation. Thus, optimization of these molecular scaffolds for m(6)A RNA MTase inhibition should aim to increase selectivity, as well as affinity.
Bisubstrate analogues as structural tools to investigate m(6)A methyltransferase active sites.,Oerum S, Catala M, Atdjian C, Brachet F, Ponchon L, Barraud P, Iannazzo L, Droogmans L, Braud E, Etheve-Quelquejeu M, Tisne C RNA Biol. 2019 Mar 17:1-11. doi: 10.1080/15476286.2019.1589360. PMID:30879411[1]
From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.
See Also
References
- ↑ Oerum S, Catala M, Atdjian C, Brachet F, Ponchon L, Barraud P, Iannazzo L, Droogmans L, Braud E, Etheve-Quelquejeu M, Tisne C. Bisubstrate analogues as structural tools to investigate m(6)A methyltransferase active sites. RNA Biol. 2019 Mar 17:1-11. doi: 10.1080/15476286.2019.1589360. PMID:30879411 doi:http://dx.doi.org/10.1080/15476286.2019.1589360
|