|
|
(One intermediate revision not shown.) |
Line 3: |
Line 3: |
| <StructureSection load='4ogs' size='340' side='right'caption='[[4ogs]], [[Resolution|resolution]] 2.21Å' scene=''> | | <StructureSection load='4ogs' size='340' side='right'caption='[[4ogs]], [[Resolution|resolution]] 2.21Å' scene=''> |
| == Structural highlights == | | == Structural highlights == |
- | <table><tr><td colspan='2'>[[4ogs]] is a 2 chain structure with sequence from [http://en.wikipedia.org/wiki/Aeqvi Aeqvi]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=4OGS OCA]. For a <b>guided tour on the structure components</b> use [http://oca.weizmann.ac.il/oca-docs/fgij/fg.htm?mol=4OGS FirstGlance]. <br> | + | <table><tr><td colspan='2'>[[4ogs]] is a 2 chain structure with sequence from [https://en.wikipedia.org/wiki/Aequorea_victoria Aequorea victoria]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=4OGS OCA]. For a <b>guided tour on the structure components</b> use [https://proteopedia.org/fgij/fg.htm?mol=4OGS FirstGlance]. <br> |
- | </td></tr><tr id='ligand'><td class="sblockLbl"><b>[[Ligand|Ligands:]]</b></td><td class="sblockDat"><scene name='pdbligand=CL:CHLORIDE+ION'>CL</scene></td></tr> | + | </td></tr><tr id='method'><td class="sblockLbl"><b>[[Empirical_models|Method:]]</b></td><td class="sblockDat" id="methodDat">X-ray diffraction, [[Resolution|Resolution]] 2.21Å</td></tr> |
- | <tr id='NonStdRes'><td class="sblockLbl"><b>[[Non-Standard_Residue|NonStd Res:]]</b></td><td class="sblockDat"><scene name='pdbligand=CRO:{2-[(1R,2R)-1-AMINO-2-HYDROXYPROPYL]-4-(4-HYDROXYBENZYLIDENE)-5-OXO-4,5-DIHYDRO-1H-IMIDAZOL-1-YL}ACETIC+ACID'>CRO</scene></td></tr> | + | <tr id='ligand'><td class="sblockLbl"><b>[[Ligand|Ligands:]]</b></td><td class="sblockDat" id="ligandDat"><scene name='pdbligand=CL:CHLORIDE+ION'>CL</scene>, <scene name='pdbligand=CRO:{2-[(1R,2R)-1-AMINO-2-HYDROXYPROPYL]-4-(4-HYDROXYBENZYLIDENE)-5-OXO-4,5-DIHYDRO-1H-IMIDAZOL-1-YL}ACETIC+ACID'>CRO</scene></td></tr> |
- | <tr id='related'><td class="sblockLbl"><b>[[Related_structure|Related:]]</b></td><td class="sblockDat">[[2qle|2qle]]</td></tr>
| + | <tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[https://proteopedia.org/fgij/fg.htm?mol=4ogs FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=4ogs OCA], [https://pdbe.org/4ogs PDBe], [https://www.rcsb.org/pdb/explore.do?structureId=4ogs RCSB], [https://www.ebi.ac.uk/pdbsum/4ogs PDBsum], [https://prosat.h-its.org/prosat/prosatexe?pdbcode=4ogs ProSAT]</span></td></tr> |
- | <tr id='gene'><td class="sblockLbl"><b>[[Gene|Gene:]]</b></td><td class="sblockDat">GFP ([http://www.ncbi.nlm.nih.gov/Taxonomy/Browser/wwwtax.cgi?mode=Info&srchmode=5&id=6100 AEQVI])</td></tr>
| + | |
- | <tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[http://oca.weizmann.ac.il/oca-docs/fgij/fg.htm?mol=4ogs FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=4ogs OCA], [http://pdbe.org/4ogs PDBe], [http://www.rcsb.org/pdb/explore.do?structureId=4ogs RCSB], [http://www.ebi.ac.uk/pdbsum/4ogs PDBsum], [http://prosat.h-its.org/prosat/prosatexe?pdbcode=4ogs ProSAT]</span></td></tr> | + | |
| </table> | | </table> |
| == Function == | | == Function == |
- | [[http://www.uniprot.org/uniprot/GFP_AEQVI GFP_AEQVI]] Energy-transfer acceptor. Its role is to transduce the blue chemiluminescence of the protein aequorin into green fluorescent light by energy transfer. Fluoresces in vivo upon receiving energy from the Ca(2+)-activated photoprotein aequorin. | + | [https://www.uniprot.org/uniprot/GFP_AEQVI GFP_AEQVI] Energy-transfer acceptor. Its role is to transduce the blue chemiluminescence of the protein aequorin into green fluorescent light by energy transfer. Fluoresces in vivo upon receiving energy from the Ca(2+)-activated photoprotein aequorin. |
| <div style="background-color:#fffaf0;"> | | <div style="background-color:#fffaf0;"> |
| == Publication Abstract from PubMed == | | == Publication Abstract from PubMed == |
Line 23: |
Line 21: |
| | | |
| ==See Also== | | ==See Also== |
- | *[[Green Fluorescent Protein|Green Fluorescent Protein]] | + | *[[Green Fluorescent Protein 3D structures|Green Fluorescent Protein 3D structures]] |
| == References == | | == References == |
| <references/> | | <references/> |
| __TOC__ | | __TOC__ |
| </StructureSection> | | </StructureSection> |
- | [[Category: Aeqvi]] | + | [[Category: Aequorea victoria]] |
| [[Category: Large Structures]] | | [[Category: Large Structures]] |
- | [[Category: Remington, S J]] | + | [[Category: Remington SJ]] |
- | [[Category: Saif, M]] | + | [[Category: Saif M]] |
- | [[Category: Beta-can]]
| + | |
- | [[Category: Fluorescent protein]]
| + | |
| Structural highlights
Function
GFP_AEQVI Energy-transfer acceptor. Its role is to transduce the blue chemiluminescence of the protein aequorin into green fluorescent light by energy transfer. Fluoresces in vivo upon receiving energy from the Ca(2+)-activated photoprotein aequorin.
Publication Abstract from PubMed
Mutations near the fluorescing chromophore of the green fluorescent protein (GFP) have direct effects on the absorption and emission spectra. Some mutants have significant band shifts and most of the mutants exhibit a loss of fluorescence intensity. In this study we continue our investigation of the factors controlling the excited state proton transfer (PT) process of GFP, in particular to study the effects of modifications to the key side chain Ser205 in wt-GFP, proposed to participate in the proton wire. To this aim we combined mutagenesis, X-ray crystallography, steady-state spectroscopy, time-resolved emission spectroscopy and all-atom explicit molecular dynamics (MD) simulations to study the double mutant T203V/S205A. Our results show that while in the previously described GFP double mutant T203V/S205V the PT process does not occur, in the T203V/S205A mutant the PT process does occur, but with a 350 times slower rate than in wild-type GFP (wt-GFP). Furthermore, the kinetic isotope effect in the GFP double mutant T203V/S205A is twice smaller than in the wt-GFP and in the GFP single mutant S205V, which forms a novel PT pathway. On the other hand, the crystal structure of GFP T203V/S205A does not reveal a viable proton transfer pathway. To explain PT in GFP T203V/S205A, we argue on the basis of the MD simulations for an alternative, novel proton-wire pathway which involves the phenol group of the chromophore and water molecules infrequently entering from the bulk. This alternative pathway may explain the dramatically slow PT in the GFP double mutant T203V/S205A compared to wt-GFP.
Insight into the structure and the mechanism of the slow proton transfer in the GFP double mutant T203V/S205A.,Wineman-Fisher V, Simkovitch R, Shomer S, Gepshtein R, Huppert D, Saif M, Kallio K, Remington SJ, Miller Y Phys Chem Chem Phys. 2014 Jun 21;16(23):11211-23. doi: 10.1039/c4cp00311j. Epub, 2014 Apr 28. PMID:24776960[1]
From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.
See Also
References
- ↑ Wineman-Fisher V, Simkovitch R, Shomer S, Gepshtein R, Huppert D, Saif M, Kallio K, Remington SJ, Miller Y. Insight into the structure and the mechanism of the slow proton transfer in the GFP double mutant T203V/S205A. Phys Chem Chem Phys. 2014 Jun 21;16(23):11211-23. doi: 10.1039/c4cp00311j. Epub, 2014 Apr 28. PMID:24776960 doi:http://dx.doi.org/10.1039/c4cp00311j
|