5k7u

From Proteopedia

(Difference between revisions)
Jump to: navigation, search
Current revision (13:04, 1 March 2024) (edit) (undo)
 
(One intermediate revision not shown.)
Line 3: Line 3:
<StructureSection load='5k7u' size='340' side='right'caption='[[5k7u]], [[Resolution|resolution]] 1.70&Aring;' scene=''>
<StructureSection load='5k7u' size='340' side='right'caption='[[5k7u]], [[Resolution|resolution]] 1.70&Aring;' scene=''>
== Structural highlights ==
== Structural highlights ==
-
<table><tr><td colspan='2'>[[5k7u]] is a 2 chain structure with sequence from [http://en.wikipedia.org/wiki/Human Human]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=5K7U OCA]. For a <b>guided tour on the structure components</b> use [http://oca.weizmann.ac.il/oca-docs/fgij/fg.htm?mol=5K7U FirstGlance]. <br>
+
<table><tr><td colspan='2'>[[5k7u]] is a 2 chain structure with sequence from [https://en.wikipedia.org/wiki/Homo_sapiens Homo sapiens]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=5K7U OCA]. For a <b>guided tour on the structure components</b> use [https://proteopedia.org/fgij/fg.htm?mol=5K7U FirstGlance]. <br>
-
</td></tr><tr id='ligand'><td class="sblockLbl"><b>[[Ligand|Ligands:]]</b></td><td class="sblockDat"><scene name='pdbligand=SAM:S-ADENOSYLMETHIONINE'>SAM</scene></td></tr>
+
</td></tr><tr id='method'><td class="sblockLbl"><b>[[Empirical_models|Method:]]</b></td><td class="sblockDat" id="methodDat">X-ray diffraction, [[Resolution|Resolution]] 1.7&#8491;</td></tr>
-
<tr id='related'><td class="sblockLbl"><b>[[Related_structure|Related:]]</b></td><td class="sblockDat">[[5k7w|5k7w]], [[5k7m|5k7m]]</td></tr>
+
<tr id='ligand'><td class="sblockLbl"><b>[[Ligand|Ligands:]]</b></td><td class="sblockDat" id="ligandDat"><scene name='pdbligand=SAM:S-ADENOSYLMETHIONINE'>SAM</scene></td></tr>
-
<tr id='gene'><td class="sblockLbl"><b>[[Gene|Gene:]]</b></td><td class="sblockDat">METTL3, MTA70 ([http://www.ncbi.nlm.nih.gov/Taxonomy/Browser/wwwtax.cgi?mode=Info&srchmode=5&id=9606 HUMAN]), METTL14, KIAA1627 ([http://www.ncbi.nlm.nih.gov/Taxonomy/Browser/wwwtax.cgi?mode=Info&srchmode=5&id=9606 HUMAN])</td></tr>
+
<tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[https://proteopedia.org/fgij/fg.htm?mol=5k7u FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=5k7u OCA], [https://pdbe.org/5k7u PDBe], [https://www.rcsb.org/pdb/explore.do?structureId=5k7u RCSB], [https://www.ebi.ac.uk/pdbsum/5k7u PDBsum], [https://prosat.h-its.org/prosat/prosatexe?pdbcode=5k7u ProSAT]</span></td></tr>
-
<tr id='activity'><td class="sblockLbl"><b>Activity:</b></td><td class="sblockDat"><span class='plainlinks'>[http://en.wikipedia.org/wiki/mRNA_(2'-O-methyladenosine-N(6)-)-methyltransferase mRNA (2'-O-methyladenosine-N(6)-)-methyltransferase], with EC number [http://www.brenda-enzymes.info/php/result_flat.php4?ecno=2.1.1.62 2.1.1.62] </span></td></tr>
+
-
<tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[http://oca.weizmann.ac.il/oca-docs/fgij/fg.htm?mol=5k7u FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=5k7u OCA], [http://pdbe.org/5k7u PDBe], [http://www.rcsb.org/pdb/explore.do?structureId=5k7u RCSB], [http://www.ebi.ac.uk/pdbsum/5k7u PDBsum], [http://prosat.h-its.org/prosat/prosatexe?pdbcode=5k7u ProSAT]</span></td></tr>
+
</table>
</table>
== Function ==
== Function ==
-
[[http://www.uniprot.org/uniprot/MTA70_HUMAN MTA70_HUMAN]] N6-methyltransferase that methylates adenosine residues of some RNAs and acts as a regulator of the circadian clock, differentiation of embryonic stem cells and primary miRNA processing. N6-methyladenosine (m6A), which takes place at the 5'-[AG]GAC-3' consensus sites of some mRNAs, plays a role in the efficiency of mRNA splicing, processing, translation efficiency, editing and mRNA stability (PubMed:22575960, PubMed:24284625, PubMed:25719671, PubMed:25799998, PubMed:26321680, PubMed:26593424, PubMed:9409616). M6A regulates the length of the circadian clock: acts as a early pace-setter in the circadian loop by putting mRNA production on a fast-track for facilitating nuclear processing, thereby providing an early point of control in setting the dynamics of the feedback loop (By similarity). M6A also acts as a regulator of mRNA stability: in embryonic stem cells (ESCs), m6A methylation of mRNAs encoding key naive pluripotency-promoting transcripts results in transcript destabilization, promoting differentiation of ESCs (By similarity). M6A also takes place in other RNA molecules, such as primary miRNA (pri-miRNAs) (PubMed:25799998). Mediates methylation of pri-miRNAs, marking them for recognition and processing by DGCR8 (PubMed:25799998).[UniProtKB:Q8C3P7]<ref>PMID:22575960</ref> <ref>PMID:24284625</ref> <ref>PMID:25719671</ref> <ref>PMID:25799998</ref> <ref>PMID:26321680</ref> <ref>PMID:26593424</ref> <ref>PMID:9409616</ref> [[http://www.uniprot.org/uniprot/MET14_HUMAN MET14_HUMAN]] N6-methyltransferase that methylates adenosine residues of some mRNAs and acts as a regulator of the circadian clock and differentiation of embryonic stem cells. N6-methyladenosine (m6A), which takes place at the 5'-[AG]GAC-3' consensus sites of some mRNAs, plays a role in the efficiency of mRNA splicing, processing and mRNA stability (PubMed:24316715, PubMed:24407421, PubMed:25719671). M6A regulates the length of the circadian clock: acts as a early pace-setter in the circadian loop. M6A also acts as a regulator of mRNA stability: in embryonic stem cells (ESCs), m6A methylation of mRNAs encoding key naive pluripotency-promoting transcripts results in transcript destabilization (By similarity).[UniProtKB:Q3UIK4]<ref>PMID:24316715</ref> <ref>PMID:24407421</ref> <ref>PMID:25719671</ref>
+
[https://www.uniprot.org/uniprot/MTA70_HUMAN MTA70_HUMAN] N6-methyltransferase that methylates adenosine residues of some RNAs and acts as a regulator of the circadian clock, differentiation of embryonic stem cells and primary miRNA processing. N6-methyladenosine (m6A), which takes place at the 5'-[AG]GAC-3' consensus sites of some mRNAs, plays a role in the efficiency of mRNA splicing, processing, translation efficiency, editing and mRNA stability (PubMed:22575960, PubMed:24284625, PubMed:25719671, PubMed:25799998, PubMed:26321680, PubMed:26593424, PubMed:9409616). M6A regulates the length of the circadian clock: acts as a early pace-setter in the circadian loop by putting mRNA production on a fast-track for facilitating nuclear processing, thereby providing an early point of control in setting the dynamics of the feedback loop (By similarity). M6A also acts as a regulator of mRNA stability: in embryonic stem cells (ESCs), m6A methylation of mRNAs encoding key naive pluripotency-promoting transcripts results in transcript destabilization, promoting differentiation of ESCs (By similarity). M6A also takes place in other RNA molecules, such as primary miRNA (pri-miRNAs) (PubMed:25799998). Mediates methylation of pri-miRNAs, marking them for recognition and processing by DGCR8 (PubMed:25799998).[UniProtKB:Q8C3P7]<ref>PMID:22575960</ref> <ref>PMID:24284625</ref> <ref>PMID:25719671</ref> <ref>PMID:25799998</ref> <ref>PMID:26321680</ref> <ref>PMID:26593424</ref> <ref>PMID:9409616</ref>
-
<div style="background-color:#fffaf0;">
+
-
== Publication Abstract from PubMed ==
+
-
N(6)-methyladenosine (m(6)A) is a prevalent, reversible chemical modification of functional RNAs and is important for central events in biology. The core m(6)A writers are Mettl3 and Mettl14, which both contain methyltransferase domains. How Mettl3 and Mettl14 cooperate to catalyze methylation of adenosines has remained elusive. We present crystal structures of the complex of Mettl3/Mettl14 methyltransferase domains in apo form as well as with bound S-adenosylmethionine (SAM) or S-adenosylhomocysteine (SAH) in the catalytic site. We determine that the heterodimeric complex of methyltransferase domains, combined with CCCH motifs, constitutes the minimally required regions for creating m(6)A modifications in vitro. We also show that Mettl3 is the catalytically active subunit, while Mettl14 plays a structural role critical for substrate recognition. Our model provides a molecular explanation for why certain mutations of Mettl3 and Mettl14 lead to impaired function of the methyltransferase complex.
+
-
 
+
-
Structural Basis for Cooperative Function of Mettl3 and Mettl14 Methyltransferases.,Wang P, Doxtader KA, Nam Y Mol Cell. 2016 Jul 21;63(2):306-17. doi: 10.1016/j.molcel.2016.05.041. Epub 2016 , Jun 30. PMID:27373337<ref>PMID:27373337</ref>
+
-
 
+
-
From MEDLINE&reg;/PubMed&reg;, a database of the U.S. National Library of Medicine.<br>
+
-
</div>
+
-
<div class="pdbe-citations 5k7u" style="background-color:#fffaf0;"></div>
+
== References ==
== References ==
<references/>
<references/>
__TOC__
__TOC__
</StructureSection>
</StructureSection>
-
[[Category: Human]]
+
[[Category: Homo sapiens]]
[[Category: Large Structures]]
[[Category: Large Structures]]
-
[[Category: Doxtader, K A]]
+
[[Category: Doxtader KA]]
-
[[Category: Nam, Y]]
+
[[Category: Nam Y]]
-
[[Category: Wang, P]]
+
[[Category: Wang P]]
-
[[Category: M6a]]
+
-
[[Category: Methyladenosine]]
+
-
[[Category: Methyltransferase]]
+
-
[[Category: Transferase]]
+

Current revision

Crystal structure of the catalytic domains of Mettl3/Mettl14 complex with SAM

PDB ID 5k7u

Drag the structure with the mouse to rotate

Proteopedia Page Contributors and Editors (what is this?)

OCA

Personal tools