|
|
| (2 intermediate revisions not shown.) |
| Line 3: |
Line 3: |
| | <StructureSection load='4qu3' size='340' side='right'caption='[[4qu3]], [[Resolution|resolution]] 1.40Å' scene=''> | | <StructureSection load='4qu3' size='340' side='right'caption='[[4qu3]], [[Resolution|resolution]] 1.40Å' scene=''> |
| | == Structural highlights == | | == Structural highlights == |
| - | <table><tr><td colspan='2'>[[4qu3]] is a 2 chain structure with sequence from [http://en.wikipedia.org/wiki/"bacillus_aeruginosus"_(schroeter_1872)_trevisan_1885 "bacillus aeruginosus" (schroeter 1872) trevisan 1885]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=4QU3 OCA]. For a <b>guided tour on the structure components</b> use [http://oca.weizmann.ac.il/oca-docs/fgij/fg.htm?mol=4QU3 FirstGlance]. <br> | + | <table><tr><td colspan='2'>[[4qu3]] is a 2 chain structure with sequence from [https://en.wikipedia.org/wiki/Pseudomonas_aeruginosa Pseudomonas aeruginosa]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=4QU3 OCA]. For a <b>guided tour on the structure components</b> use [https://proteopedia.org/fgij/fg.htm?mol=4QU3 FirstGlance]. <br> |
| - | </td></tr><tr id='ligand'><td class="sblockLbl"><b>[[Ligand|Ligands:]]</b></td><td class="sblockDat"><scene name='pdbligand=1RG:(4R,5S)-3-({(3S,5S)-5-[(3-CARBOXYPHENYL)CARBAMOYL]PYRROLIDIN-3-YL}SULFANYL)-5-[(1S,2R)-1-FORMYL-2-HYDROXYPROPYL]-4-METHYL-4,5-DIHYDRO-1H-PYRROLE-2-CARBOXYLIC+ACID'>1RG</scene>, <scene name='pdbligand=CA:CALCIUM+ION'>CA</scene>, <scene name='pdbligand=EDO:1,2-ETHANEDIOL'>EDO</scene>, <scene name='pdbligand=IOD:IODIDE+ION'>IOD</scene></td></tr> | + | </td></tr><tr id='method'><td class="sblockLbl"><b>[[Empirical_models|Method:]]</b></td><td class="sblockDat" id="methodDat">X-ray diffraction, [[Resolution|Resolution]] 1.402Å</td></tr> |
| - | <tr id='related'><td class="sblockLbl"><b>[[Related_structure|Related:]]</b></td><td class="sblockDat">[[3ni9|3ni9]], [[3nia|3nia]]</td></tr>
| + | <tr id='ligand'><td class="sblockLbl"><b>[[Ligand|Ligands:]]</b></td><td class="sblockDat" id="ligandDat"><scene name='pdbligand=1RG:(4R,5S)-3-({(3S,5S)-5-[(3-CARBOXYPHENYL)CARBAMOYL]PYRROLIDIN-3-YL}SULFANYL)-5-[(1S,2R)-1-FORMYL-2-HYDROXYPROPYL]-4-METHYL-4,5-DIHYDRO-1H-PYRROLE-2-CARBOXYLIC+ACID'>1RG</scene>, <scene name='pdbligand=CA:CALCIUM+ION'>CA</scene>, <scene name='pdbligand=EDO:1,2-ETHANEDIOL'>EDO</scene>, <scene name='pdbligand=IOD:IODIDE+ION'>IOD</scene></td></tr> |
| - | <tr id='gene'><td class="sblockLbl"><b>[[Gene|Gene:]]</b></td><td class="sblockDat">bla GES-2 ([http://www.ncbi.nlm.nih.gov/Taxonomy/Browser/wwwtax.cgi?mode=Info&srchmode=5&id=287 "Bacillus aeruginosus" (Schroeter 1872) Trevisan 1885])</td></tr>
| + | <tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[https://proteopedia.org/fgij/fg.htm?mol=4qu3 FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=4qu3 OCA], [https://pdbe.org/4qu3 PDBe], [https://www.rcsb.org/pdb/explore.do?structureId=4qu3 RCSB], [https://www.ebi.ac.uk/pdbsum/4qu3 PDBsum], [https://prosat.h-its.org/prosat/prosatexe?pdbcode=4qu3 ProSAT]</span></td></tr> |
| - | <tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[http://oca.weizmann.ac.il/oca-docs/fgij/fg.htm?mol=4qu3 FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=4qu3 OCA], [http://pdbe.org/4qu3 PDBe], [http://www.rcsb.org/pdb/explore.do?structureId=4qu3 RCSB], [http://www.ebi.ac.uk/pdbsum/4qu3 PDBsum], [http://prosat.h-its.org/prosat/prosatexe?pdbcode=4qu3 ProSAT]</span></td></tr> | + | |
| | </table> | | </table> |
| | + | == Function == |
| | + | [https://www.uniprot.org/uniprot/BLAG2_PSEAI BLAG2_PSEAI] Extended-spectrum beta-lactamase (ESBL) which confers resistance to penicillins, as well as first, third and fourth-generation cephalosporins (PubMed:11502535, PubMed:19656947, PubMed:20696873, PubMed:21220532). Has modest carbapenem-hydrolyzing activity (PubMed:11502535, PubMed:19656947, PubMed:25485972). Has cefotaxime-hydrolyzing activity (PubMed:11502535, PubMed:19656947).<ref>PMID:11502535</ref> <ref>PMID:19656947</ref> <ref>PMID:20696873</ref> <ref>PMID:21220532</ref> <ref>PMID:25485972</ref> |
| | <div style="background-color:#fffaf0;"> | | <div style="background-color:#fffaf0;"> |
| | == Publication Abstract from PubMed == | | == Publication Abstract from PubMed == |
| Line 26: |
Line 27: |
| | </StructureSection> | | </StructureSection> |
| | [[Category: Large Structures]] | | [[Category: Large Structures]] |
| - | [[Category: Black, D J]] | + | [[Category: Pseudomonas aeruginosa]] |
| - | [[Category: Frase, H]] | + | [[Category: Black DJ]] |
| - | [[Category: Smith, C A]] | + | [[Category: Frase H]] |
| - | [[Category: Stewart, N K]] | + | [[Category: Smith CA]] |
| - | [[Category: Vakulenko, S B]] | + | [[Category: Stewart NK]] |
| - | [[Category: Antibiotic resistance]] | + | [[Category: Vakulenko SB]] |
| - | [[Category: Beta-lactamase]]
| + | |
| - | [[Category: Ertapenem]]
| + | |
| - | [[Category: Hydrolase]]
| + | |
| - | [[Category: Hydrolase-antibiotic complex]]
| + | |
| Structural highlights
Function
BLAG2_PSEAI Extended-spectrum beta-lactamase (ESBL) which confers resistance to penicillins, as well as first, third and fourth-generation cephalosporins (PubMed:11502535, PubMed:19656947, PubMed:20696873, PubMed:21220532). Has modest carbapenem-hydrolyzing activity (PubMed:11502535, PubMed:19656947, PubMed:25485972). Has cefotaxime-hydrolyzing activity (PubMed:11502535, PubMed:19656947).[1] [2] [3] [4] [5]
Publication Abstract from PubMed
Carbapenems are the last resort antibiotics for treatment of life-threatening infections. The GES beta-lactamases are important contributors to carbapenem resistance in clinical bacterial pathogens. A single amino acid difference at position 170 of the GES-1, GES-2, and GES-5 enzymes is responsible for the expansion of their substrate profile to include carbapenem antibiotics. This highlights the increasing need to understand the mechanisms by which the GES beta-lactamases function to aid in development of novel therapeutics. We demonstrate that the catalytic efficiency of the enzymes with carbapenems meropenem, ertapenem, and doripenem progressively increases (100-fold) from GES-1 to -5, mainly due to an increase in the rate of acylation. The data reveal that while acylation is rate limiting for GES-1 and GES-2 for all three carbapenems, acylation and deacylation are indistinguishable for GES-5. The ertapenem-GES-2 crystal structure shows that only the core structure of the antibiotic interacts with the active site of the GES-2 beta-lactamase. The identical core structures of ertapenem, doripenem, and meropenem are likely responsible for the observed similarities in the kinetics with these carbapenems. The lack of a methyl group in the core structure of imipenem may provide a structural rationale for the increase in turnover of this carbapenem by the GES beta-lactamases. Our data also show that in GES-2 an extensive hydrogen-bonding network between the acyl-enzyme complex and the active site water attenuates activation of this water molecule, which results in poor deacylation by this enzyme.
Kinetic and Structural Requirements for Carbapenemase Activity in GES-Type beta-Lactamases.,Stewart NK, Smith CA, Frase H, Black DJ, Vakulenko SB Biochemistry. 2014 Dec 22. PMID:25485972[6]
From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.
See Also
References
- ↑ Poirel L, Weldhagen GF, Naas T, De Champs C, Dove MG, Nordmann P. GES-2, a class A beta-lactamase from Pseudomonas aeruginosa with increased hydrolysis of imipenem. Antimicrob Agents Chemother. 2001 Sep;45(9):2598-603. PMID:11502535 doi:10.1128/AAC.45.9.2598-2603.2001
- ↑ Frase H, Shi Q, Testero SA, Mobashery S, Vakulenko SB. Mechanistic basis for the emergence of catalytic competence against carbapenem antibiotics by the GES family of beta-lactamases. J Biol Chem. 2009 Oct 23;284(43):29509-13. PMID:19656947 doi:10.1074/jbc.M109.011262
- ↑ Kotsakis SD, Miriagou V, Tzelepi E, Tzouvelekis LS. Comparative biochemical and computational study of the role of naturally occurring mutations at Ambler positions 104 and 170 in GES β-lactamases. Antimicrob Agents Chemother. 2010 Nov;54(11):4864-71. PMID:20696873 doi:10.1128/AAC.00771-10
- ↑ Frase H, Toth M, Champion MM, Antunes NT, Vakulenko SB. Importance of position 170 in the inhibition of GES-type β-lactamases by clavulanic acid. Antimicrob Agents Chemother. 2011 Apr;55(4):1556-62. PMID:21220532 doi:10.1128/AAC.01292-10
- ↑ Stewart NK, Smith CA, Frase H, Black DJ, Vakulenko SB. Kinetic and Structural Requirements for Carbapenemase Activity in GES-Type beta-Lactamases. Biochemistry. 2014 Dec 22. PMID:25485972 doi:http://dx.doi.org/10.1021/bi501052t
- ↑ Stewart NK, Smith CA, Frase H, Black DJ, Vakulenko SB. Kinetic and Structural Requirements for Carbapenemase Activity in GES-Type beta-Lactamases. Biochemistry. 2014 Dec 22. PMID:25485972 doi:http://dx.doi.org/10.1021/bi501052t
|