|
|
(One intermediate revision not shown.) |
Line 3: |
Line 3: |
| <StructureSection load='4q3n' size='340' side='right'caption='[[4q3n]], [[Resolution|resolution]] 1.97Å' scene=''> | | <StructureSection load='4q3n' size='340' side='right'caption='[[4q3n]], [[Resolution|resolution]] 1.97Å' scene=''> |
| == Structural highlights == | | == Structural highlights == |
- | <table><tr><td colspan='2'>[[4q3n]] is a 1 chain structure with sequence from [http://en.wikipedia.org/wiki/Miscellaneous_nucleic_acid Miscellaneous nucleic acid]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=4Q3N OCA]. For a <b>guided tour on the structure components</b> use [http://oca.weizmann.ac.il/oca-docs/fgij/fg.htm?mol=4Q3N FirstGlance]. <br> | + | <table><tr><td colspan='2'>[[4q3n]] is a 1 chain structure with sequence from [https://en.wikipedia.org/wiki/Unidentified Unidentified]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=4Q3N OCA]. For a <b>guided tour on the structure components</b> use [https://proteopedia.org/fgij/fg.htm?mol=4Q3N FirstGlance]. <br> |
- | </td></tr><tr id='ligand'><td class="sblockLbl"><b>[[Ligand|Ligands:]]</b></td><td class="sblockDat"><scene name='pdbligand=ACT:ACETATE+ION'>ACT</scene>, <scene name='pdbligand=CL:CHLORIDE+ION'>CL</scene>, <scene name='pdbligand=GOL:GLYCEROL'>GOL</scene>, <scene name='pdbligand=NA:SODIUM+ION'>NA</scene>, <scene name='pdbligand=PGE:TRIETHYLENE+GLYCOL'>PGE</scene>, <scene name='pdbligand=TRS:2-AMINO-2-HYDROXYMETHYL-PROPANE-1,3-DIOL'>TRS</scene></td></tr> | + | </td></tr><tr id='method'><td class="sblockLbl"><b>[[Empirical_models|Method:]]</b></td><td class="sblockDat" id="methodDat">X-ray diffraction, [[Resolution|Resolution]] 1.97Å</td></tr> |
- | <tr id='related'><td class="sblockLbl"><b>[[Related_structure|Related:]]</b></td><td class="sblockDat">[[4q3k|4q3k]], [[4q3l|4q3l]], [[4q3m|4q3m]], [[4q3o|4q3o]]</td></tr>
| + | <tr id='ligand'><td class="sblockLbl"><b>[[Ligand|Ligands:]]</b></td><td class="sblockDat" id="ligandDat"><scene name='pdbligand=ACT:ACETATE+ION'>ACT</scene>, <scene name='pdbligand=CL:CHLORIDE+ION'>CL</scene>, <scene name='pdbligand=GOL:GLYCEROL'>GOL</scene>, <scene name='pdbligand=NA:SODIUM+ION'>NA</scene>, <scene name='pdbligand=PGE:TRIETHYLENE+GLYCOL'>PGE</scene>, <scene name='pdbligand=TRS:2-AMINO-2-HYDROXYMETHYL-PROPANE-1,3-DIOL'>TRS</scene></td></tr> |
- | <tr id='gene'><td class="sblockLbl"><b>[[Gene|Gene:]]</b></td><td class="sblockDat">MGS-M5 ([http://www.ncbi.nlm.nih.gov/Taxonomy/Browser/wwwtax.cgi?mode=Info&srchmode=5&id=32644 miscellaneous nucleic acid])</td></tr>
| + | <tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[https://proteopedia.org/fgij/fg.htm?mol=4q3n FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=4q3n OCA], [https://pdbe.org/4q3n PDBe], [https://www.rcsb.org/pdb/explore.do?structureId=4q3n RCSB], [https://www.ebi.ac.uk/pdbsum/4q3n PDBsum], [https://prosat.h-its.org/prosat/prosatexe?pdbcode=4q3n ProSAT]</span></td></tr> |
- | <tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[http://oca.weizmann.ac.il/oca-docs/fgij/fg.htm?mol=4q3n FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=4q3n OCA], [http://pdbe.org/4q3n PDBe], [http://www.rcsb.org/pdb/explore.do?structureId=4q3n RCSB], [http://www.ebi.ac.uk/pdbsum/4q3n PDBsum], [http://prosat.h-its.org/prosat/prosatexe?pdbcode=4q3n ProSAT]</span></td></tr> | + | |
| </table> | | </table> |
| + | == Function == |
| + | [https://www.uniprot.org/uniprot/A0A0B5KUB4_9FIRM A0A0B5KUB4_9FIRM] Catalyzes the conversion of lactate to pyruvate.[HAMAP-Rule:MF_00488] |
| <div style="background-color:#fffaf0;"> | | <div style="background-color:#fffaf0;"> |
| == Publication Abstract from PubMed == | | == Publication Abstract from PubMed == |
Line 23: |
Line 24: |
| </StructureSection> | | </StructureSection> |
| [[Category: Large Structures]] | | [[Category: Large Structures]] |
- | [[Category: Miscellaneous nucleic acid]] | + | [[Category: Unidentified]] |
- | [[Category: Alcaide, M]] | + | [[Category: Alcaide M]] |
- | [[Category: Cui, H]] | + | [[Category: Cui H]] |
- | [[Category: Ferrer, M]] | + | [[Category: Ferrer M]] |
- | [[Category: Savchenko, A]] | + | [[Category: Savchenko A]] |
- | [[Category: Stogios, P J]] | + | [[Category: Stogios PJ]] |
- | [[Category: Xu, X]] | + | [[Category: Xu X]] |
- | [[Category: Dehydrogenase]]
| + | |
- | [[Category: Hydrolase]]
| + | |
- | [[Category: L-lactate dehydrogenase]]
| + | |
- | [[Category: Metagenome]]
| + | |
- | [[Category: Metagenomic library]]
| + | |
- | [[Category: Oxidoreductase]]
| + | |
- | [[Category: Rossmann fold]]
| + | |
| Structural highlights
4q3n is a 1 chain structure with sequence from Unidentified. Full crystallographic information is available from OCA. For a guided tour on the structure components use FirstGlance.
| Method: | X-ray diffraction, Resolution 1.97Å |
Ligands: | , , , , , |
Resources: | FirstGlance, OCA, PDBe, RCSB, PDBsum, ProSAT |
Function
A0A0B5KUB4_9FIRM Catalyzes the conversion of lactate to pyruvate.[HAMAP-Rule:MF_00488]
Publication Abstract from PubMed
The present study provides a deeper view of protein functionality as a function of temperature, salt and pressure in deep-sea habitats. A set of eight different enzymes from five distinct deep-sea (3040-4908 m depth), moderately warm (14.0-16.5 degrees C) biotopes, characterized by a wide range of salinities (39-348 practical salinity units), were investigated for this purpose. An enzyme from a 'superficial' marine hydrothermal habitat (65 degrees C) was isolated and characterized for comparative purposes. We report here the first experimental evidence suggesting that in salt-saturated deep-sea habitats, the adaptation to high pressure is linked to high thermal resistance (P value = 0.0036). Salinity might therefore increase the temperature window for enzyme activity, and possibly microbial growth, in deep-sea habitats. As an example, Lake Medee, the largest hypersaline deep-sea anoxic lake of the Eastern Mediterranean Sea, where the water temperature is never higher than 16 degrees C, was shown to contain halopiezophilic-like enzymes that are most active at 70 degrees C and with denaturing temperatures of 71.4 degrees C. The determination of the crystal structures of five proteins revealed unknown molecular mechanisms involved in protein adaptation to poly-extremes as well as distinct active site architectures and substrate preferences relative to other structurally characterized enzymes.
Pressure adaptation is linked to thermal adaptation in salt-saturated marine habitats.,Alcaide M, Stogios PJ, Lafraya A, Tchigvintsev A, Flick R, Bargiela R, Chernikova TN, Reva ON, Hai T, Leggewie CC, Katzke N, La Cono V, Matesanz R, Jebbar M, Jaeger KE, Yakimov MM, Yakunin AF, Golyshin PN, Golyshina OV, Savchenko A, Ferrer M Environ Microbiol. 2014 Oct 20. doi: 10.1111/1462-2920.12660. PMID:25330254[1]
From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.
References
- ↑ Alcaide M, Stogios PJ, Lafraya A, Tchigvintsev A, Flick R, Bargiela R, Chernikova TN, Reva ON, Hai T, Leggewie CC, Katzke N, La Cono V, Matesanz R, Jebbar M, Jaeger KE, Yakimov MM, Yakunin AF, Golyshin PN, Golyshina OV, Savchenko A, Ferrer M. Pressure adaptation is linked to thermal adaptation in salt-saturated marine habitats. Environ Microbiol. 2014 Oct 20. doi: 10.1111/1462-2920.12660. PMID:25330254 doi:http://dx.doi.org/10.1111/1462-2920.12660
|