|
|
(2 intermediate revisions not shown.) |
Line 3: |
Line 3: |
| <StructureSection load='1h0c' size='340' side='right'caption='[[1h0c]], [[Resolution|resolution]] 2.50Å' scene=''> | | <StructureSection load='1h0c' size='340' side='right'caption='[[1h0c]], [[Resolution|resolution]] 2.50Å' scene=''> |
| == Structural highlights == | | == Structural highlights == |
- | <table><tr><td colspan='2'>[[1h0c]] is a 1 chain structure with sequence from [http://en.wikipedia.org/wiki/Human Human]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=1H0C OCA]. For a <b>guided tour on the structure components</b> use [http://oca.weizmann.ac.il/oca-docs/fgij/fg.htm?mol=1H0C FirstGlance]. <br> | + | <table><tr><td colspan='2'>[[1h0c]] is a 1 chain structure with sequence from [https://en.wikipedia.org/wiki/Homo_sapiens Homo sapiens]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=1H0C OCA]. For a <b>guided tour on the structure components</b> use [https://proteopedia.org/fgij/fg.htm?mol=1H0C FirstGlance]. <br> |
- | </td></tr><tr id='ligand'><td class="sblockLbl"><b>[[Ligand|Ligands:]]</b></td><td class="sblockDat"><scene name='pdbligand=AOA:(AMINOOXY)ACETIC+ACID'>AOA</scene>, <scene name='pdbligand=GOL:GLYCEROL'>GOL</scene>, <scene name='pdbligand=PLP:PYRIDOXAL-5-PHOSPHATE'>PLP</scene></td></tr> | + | </td></tr><tr id='method'><td class="sblockLbl"><b>[[Empirical_models|Method:]]</b></td><td class="sblockDat" id="methodDat">X-ray diffraction, [[Resolution|Resolution]] 2.5Å</td></tr> |
- | <tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[http://oca.weizmann.ac.il/oca-docs/fgij/fg.htm?mol=1h0c FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=1h0c OCA], [http://pdbe.org/1h0c PDBe], [http://www.rcsb.org/pdb/explore.do?structureId=1h0c RCSB], [http://www.ebi.ac.uk/pdbsum/1h0c PDBsum], [http://prosat.h-its.org/prosat/prosatexe?pdbcode=1h0c ProSAT]</span></td></tr> | + | <tr id='ligand'><td class="sblockLbl"><b>[[Ligand|Ligands:]]</b></td><td class="sblockDat" id="ligandDat"><scene name='pdbligand=AOA:(AMINOOXY)ACETIC+ACID'>AOA</scene>, <scene name='pdbligand=GOL:GLYCEROL'>GOL</scene>, <scene name='pdbligand=PLP:PYRIDOXAL-5-PHOSPHATE'>PLP</scene></td></tr> |
| + | <tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[https://proteopedia.org/fgij/fg.htm?mol=1h0c FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=1h0c OCA], [https://pdbe.org/1h0c PDBe], [https://www.rcsb.org/pdb/explore.do?structureId=1h0c RCSB], [https://www.ebi.ac.uk/pdbsum/1h0c PDBsum], [https://prosat.h-its.org/prosat/prosatexe?pdbcode=1h0c ProSAT]</span></td></tr> |
| </table> | | </table> |
| == Disease == | | == Disease == |
- | [[http://www.uniprot.org/uniprot/SPYA_HUMAN SPYA_HUMAN]] Defects in AGXT are the cause of hyperoxaluria primary type 1 (HP1) [MIM:[http://omim.org/entry/259900 259900]]; also known as primary hyperoxaluria type I (PH1) and oxalosis I. HP1 is a rare autosomal recessive inborn error of glyoxylate metabolism characterized by increased excretion of oxalate and glycolate, and the progressive accumulation of insoluble calcium oxalate in the kidney and urinary tract.<ref>PMID:1703535</ref> <ref>PMID:2039493</ref> <ref>PMID:1349575</ref> <ref>PMID:1301173</ref> <ref>PMID:8101040</ref> <ref>PMID:9192270</ref> <ref>PMID:9604803</ref> <ref>PMID:10394939</ref> <ref>PMID:10453743</ref> <ref>PMID:10541294</ref> <ref>PMID:10862087</ref> <ref>PMID:10960483</ref> <ref>PMID:12559847</ref> <ref>PMID:12777626</ref> <ref>PMID:15253729</ref> <ref>PMID:15849466</ref> <ref>PMID:15961946</ref> <ref>PMID:15963748</ref> | + | [https://www.uniprot.org/uniprot/AGT1_HUMAN AGT1_HUMAN] Primary hyperoxaluria type 1. The disease is caused by variants affecting the gene represented in this entry. |
| + | == Function == |
| + | [https://www.uniprot.org/uniprot/AGT1_HUMAN AGT1_HUMAN] Peroxisomal aminotransferase that catalyzes the transamination of glyoxylate to glycine and contributes to the glyoxylate detoxification (PubMed:10960483, PubMed:12777626, PubMed:23229545, PubMed:24055001, PubMed:26149463). Also catalyzes the transamination between L-serine and pyruvate and contributes to gluconeogenesis from the L-serine metabolism (PubMed:10347152).<ref>PMID:10347152</ref> <ref>PMID:10960483</ref> <ref>PMID:12777626</ref> <ref>PMID:23229545</ref> <ref>PMID:24055001</ref> <ref>PMID:26149463</ref> |
| == Evolutionary Conservation == | | == Evolutionary Conservation == |
| [[Image:Consurf_key_small.gif|200px|right]] | | [[Image:Consurf_key_small.gif|200px|right]] |
Line 14: |
Line 17: |
| <jmolCheckbox> | | <jmolCheckbox> |
| <scriptWhenChecked>; select protein; define ~consurf_to_do selected; consurf_initial_scene = true; script "/wiki/ConSurf/h0/1h0c_consurf.spt"</scriptWhenChecked> | | <scriptWhenChecked>; select protein; define ~consurf_to_do selected; consurf_initial_scene = true; script "/wiki/ConSurf/h0/1h0c_consurf.spt"</scriptWhenChecked> |
- | <scriptWhenUnchecked>script /wiki/extensions/Proteopedia/spt/initialview01.spt</scriptWhenUnchecked> | + | <scriptWhenUnchecked>script /wiki/extensions/Proteopedia/spt/initialview03.spt</scriptWhenUnchecked> |
| <text>to colour the structure by Evolutionary Conservation</text> | | <text>to colour the structure by Evolutionary Conservation</text> |
| </jmolCheckbox> | | </jmolCheckbox> |
Line 35: |
Line 38: |
| __TOC__ | | __TOC__ |
| </StructureSection> | | </StructureSection> |
- | [[Category: Human]] | + | [[Category: Homo sapiens]] |
| [[Category: Large Structures]] | | [[Category: Large Structures]] |
- | [[Category: Danpure, C J]] | + | [[Category: Danpure CJ]] |
- | [[Category: Pearl, L H]] | + | [[Category: Pearl LH]] |
- | [[Category: Roe, S M]] | + | [[Category: Roe SM]] |
- | [[Category: Zhang, X]] | + | [[Category: Zhang X]] |
- | [[Category: Aminotransferase]]
| + | |
- | [[Category: Pyridoxal phosphate]]
| + | |
- | [[Category: Transferase]]
| + | |
| Structural highlights
Disease
AGT1_HUMAN Primary hyperoxaluria type 1. The disease is caused by variants affecting the gene represented in this entry.
Function
AGT1_HUMAN Peroxisomal aminotransferase that catalyzes the transamination of glyoxylate to glycine and contributes to the glyoxylate detoxification (PubMed:10960483, PubMed:12777626, PubMed:23229545, PubMed:24055001, PubMed:26149463). Also catalyzes the transamination between L-serine and pyruvate and contributes to gluconeogenesis from the L-serine metabolism (PubMed:10347152).[1] [2] [3] [4] [5] [6]
Evolutionary Conservation
Check, as determined by ConSurfDB. You may read the explanation of the method and the full data available from ConSurf.
Publication Abstract from PubMed
A deficiency of the liver-specific enzyme alanine:glyoxylate aminotransferase (AGT) is responsible for the potentially lethal hereditary kidney stone disease primary hyperoxaluria type 1 (PH1). Many of the mutations in the gene encoding AGT are associated with specific enzymatic phenotypes such as accelerated proteolysis (Ser205Pro), intra-peroxisomal aggregation (Gly41Arg), inhibition of pyridoxal phosphate binding and loss of catalytic activity (Gly82Glu), and peroxisome-to-mitochondrion mistargeting (Gly170Arg). Several mutations, including that responsible for AGT mistargeting, co-segregate and interact synergistically with a Pro11Leu polymorphism found at high frequency in the normal population. In order to gain further insights into the mechanistic link between genotype and enzymatic phenotype in PH1, we have determined the crystal structure of normal human AGT complexed to the competitive inhibitor amino-oxyacetic acid to 2.5A. Analysis of this structure allows the effects of these mutations and polymorphism to be rationalised in terms of AGT tertiary and quaternary conformation, and in particular it provides a possible explanation for the Pro11Leu-Gly170Arg synergism that leads to AGT mistargeting.
Crystal structure of alanine:glyoxylate aminotransferase and the relationship between genotype and enzymatic phenotype in primary hyperoxaluria type 1.,Zhang X, Roe SM, Hou Y, Bartlam M, Rao Z, Pearl LH, Danpure CJ J Mol Biol. 2003 Aug 15;331(3):643-52. PMID:12899834[7]
From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.
See Also
References
- ↑ Xue HH, Sakaguchi T, Fujie M, Ogawa H, Ichiyama A. Flux of the L-serine metabolism in rabbit, human, and dog livers. Substantial contributions of both mitochondrial and peroxisomal serine:pyruvate/alanine:glyoxylate aminotransferase. J Biol Chem. 1999 Jun 4;274(23):16028-33. doi: 10.1074/jbc.274.23.16028. PMID:10347152 doi:http://dx.doi.org/10.1074/jbc.274.23.16028
- ↑ Lumb MJ, Danpure CJ. Functional synergism between the most common polymorphism in human alanine:glyoxylate aminotransferase and four of the most common disease-causing mutations. J Biol Chem. 2000 Nov 17;275(46):36415-22. PMID:10960483 doi:10.1074/jbc.M006693200
- ↑ Santana A, Salido E, Torres A, Shapiro LJ. Primary hyperoxaluria type 1 in the Canary Islands: a conformational disease due to I244T mutation in the P11L-containing alanine:glyoxylate aminotransferase. Proc Natl Acad Sci U S A. 2003 Jun 10;100(12):7277-82. Epub 2003 May 30. PMID:12777626 doi:10.1073/pnas.1131968100
- ↑ Fargue S, Lewin J, Rumsby G, Danpure CJ. Four of the most common mutations in primary hyperoxaluria type 1 unmask the cryptic mitochondrial targeting sequence of alanine:glyoxylate aminotransferase encoded by the polymorphic minor allele. J Biol Chem. 2013 Jan 25;288(4):2475-84. doi: 10.1074/jbc.M112.432617. Epub 2012 , Dec 10. PMID:23229545 doi:http://dx.doi.org/10.1074/jbc.M112.432617
- ↑ Oppici E, Roncador A, Montioli R, Bianconi S, Cellini B. Gly161 mutations associated with Primary Hyperoxaluria Type I induce the cytosolic aggregation and the intracellular degradation of the apo-form of alanine:glyoxylate aminotransferase. Biochim Biophys Acta. 2013 Dec;1832(12):2277-88. doi:, 10.1016/j.bbadis.2013.09.002. Epub 2013 Sep 17. PMID:24055001 doi:http://dx.doi.org/10.1016/j.bbadis.2013.09.002
- ↑ Montioli R, Oppici E, Dindo M, Roncador A, Gotte G, Cellini B, Borri Voltattorni C. Misfolding caused by the pathogenic mutation G47R on the minor allele of alanine:glyoxylate aminotransferase and chaperoning activity of pyridoxine. Biochim Biophys Acta. 2015 Oct;1854(10 Pt A):1280-9. doi:, 10.1016/j.bbapap.2015.07.002. Epub 2015 Jul 3. PMID:26149463 doi:http://dx.doi.org/10.1016/j.bbapap.2015.07.002
- ↑ Zhang X, Roe SM, Hou Y, Bartlam M, Rao Z, Pearl LH, Danpure CJ. Crystal structure of alanine:glyoxylate aminotransferase and the relationship between genotype and enzymatic phenotype in primary hyperoxaluria type 1. J Mol Biol. 2003 Aug 15;331(3):643-52. PMID:12899834
|