|
|
| (One intermediate revision not shown.) |
| Line 3: |
Line 3: |
| | <StructureSection load='1w16' size='340' side='right'caption='[[1w16]], [[Resolution|resolution]] 2.30Å' scene=''> | | <StructureSection load='1w16' size='340' side='right'caption='[[1w16]], [[Resolution|resolution]] 2.30Å' scene=''> |
| | == Structural highlights == | | == Structural highlights == |
| - | <table><tr><td colspan='2'>[[1w16]] is a 1 chain structure with sequence from [http://en.wikipedia.org/wiki/Buffalo_rat Buffalo rat]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=1W16 OCA]. For a <b>guided tour on the structure components</b> use [http://oca.weizmann.ac.il/oca-docs/fgij/fg.htm?mol=1W16 FirstGlance]. <br> | + | <table><tr><td colspan='2'>[[1w16]] is a 1 chain structure with sequence from [https://en.wikipedia.org/wiki/Rattus_norvegicus Rattus norvegicus]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=1W16 OCA]. For a <b>guided tour on the structure components</b> use [https://proteopedia.org/fgij/fg.htm?mol=1W16 FirstGlance]. <br> |
| - | </td></tr><tr id='ligand'><td class="sblockLbl"><b>[[Ligand|Ligands:]]</b></td><td class="sblockDat"><scene name='pdbligand=CL:CHLORIDE+ION'>CL</scene>, <scene name='pdbligand=NA:SODIUM+ION'>NA</scene></td></tr> | + | </td></tr><tr id='method'><td class="sblockLbl"><b>[[Empirical_models|Method:]]</b></td><td class="sblockDat" id="methodDat">X-ray diffraction, [[Resolution|Resolution]] 2.3Å</td></tr> |
| - | <tr id='related'><td class="sblockLbl"><b>[[Related_structure|Related:]]</b></td><td class="sblockDat">[[1w15|1w15]]</td></tr> | + | <tr id='ligand'><td class="sblockLbl"><b>[[Ligand|Ligands:]]</b></td><td class="sblockDat" id="ligandDat"><scene name='pdbligand=CL:CHLORIDE+ION'>CL</scene>, <scene name='pdbligand=NA:SODIUM+ION'>NA</scene></td></tr> |
| - | <tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[http://oca.weizmann.ac.il/oca-docs/fgij/fg.htm?mol=1w16 FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=1w16 OCA], [http://pdbe.org/1w16 PDBe], [http://www.rcsb.org/pdb/explore.do?structureId=1w16 RCSB], [http://www.ebi.ac.uk/pdbsum/1w16 PDBsum], [http://prosat.h-its.org/prosat/prosatexe?pdbcode=1w16 ProSAT]</span></td></tr> | + | <tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[https://proteopedia.org/fgij/fg.htm?mol=1w16 FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=1w16 OCA], [https://pdbe.org/1w16 PDBe], [https://www.rcsb.org/pdb/explore.do?structureId=1w16 RCSB], [https://www.ebi.ac.uk/pdbsum/1w16 PDBsum], [https://prosat.h-its.org/prosat/prosatexe?pdbcode=1w16 ProSAT]</span></td></tr> |
| | </table> | | </table> |
| | + | == Function == |
| | + | [https://www.uniprot.org/uniprot/SYT4_RAT SYT4_RAT] Synaptotagmin family member which does not bind Ca(2+) (PubMed:7993622). Involved in neuronal dense core vesicles (DCVs) mobility through its interaction with KIF1A. Upon increased neuronal activity, phosphorylation by MAPK8/JNK1 destabilizes the interaction with KIF1A and captures DCVs to synapses (PubMed:29166604). Plays a role in dendrite formation by melanocytes (By similarity).[UniProtKB:Q9H2B2]<ref>PMID:29166604</ref> <ref>PMID:7993622</ref> |
| | == Evolutionary Conservation == | | == Evolutionary Conservation == |
| | [[Image:Consurf_key_small.gif|200px|right]] | | [[Image:Consurf_key_small.gif|200px|right]] |
| Line 29: |
Line 31: |
| | | | |
| | ==See Also== | | ==See Also== |
| - | *[[Synaptotagmin|Synaptotagmin]] | + | *[[Synaptotagmin 3D structures|Synaptotagmin 3D structures]] |
| | == References == | | == References == |
| | <references/> | | <references/> |
| | __TOC__ | | __TOC__ |
| | </StructureSection> | | </StructureSection> |
| - | [[Category: Buffalo rat]] | |
| | [[Category: Large Structures]] | | [[Category: Large Structures]] |
| - | [[Category: Dai, H]] | + | [[Category: Rattus norvegicus]] |
| - | [[Category: Machius, M]] | + | [[Category: Dai H]] |
| - | [[Category: Rizo, J]] | + | [[Category: Machius M]] |
| - | [[Category: Shin, O H]] | + | [[Category: Rizo J]] |
| - | [[Category: Sudhof, T C]] | + | [[Category: Shin O-H]] |
| - | [[Category: Tomchick, D R]] | + | [[Category: Sudhof TC]] |
| - | [[Category: Endocytosis/exocytosis]]
| + | [[Category: Tomchick DR]] |
| - | [[Category: Metal binding protein]]
| + | |
| - | [[Category: Neurotransmitter release]]
| + | |
| - | [[Category: Synaptotagmin]]
| + | |
| - | [[Category: Transmembrane]]
| + | |
| Structural highlights
Function
SYT4_RAT Synaptotagmin family member which does not bind Ca(2+) (PubMed:7993622). Involved in neuronal dense core vesicles (DCVs) mobility through its interaction with KIF1A. Upon increased neuronal activity, phosphorylation by MAPK8/JNK1 destabilizes the interaction with KIF1A and captures DCVs to synapses (PubMed:29166604). Plays a role in dendrite formation by melanocytes (By similarity).[UniProtKB:Q9H2B2][1] [2]
Evolutionary Conservation
Check, as determined by ConSurfDB. You may read the explanation of the method and the full data available from ConSurf.
Publication Abstract from PubMed
The neuronal protein synaptotagmin 1 functions as a Ca(2+) sensor in exocytosis via two Ca(2+)-binding C(2) domains. The very similar synaptotagmin 4, which includes all the predicted Ca(2+)-binding residues in the C(2)B domain but not in the C(2)A domain, is also thought to function as a neuronal Ca(2+) sensor. Here we show that, unexpectedly, both C(2) domains of fly synaptotagmin 4 exhibit Ca(2+)-dependent phospholipid binding, whereas neither C(2) domain of rat synaptotagmin 4 binds Ca(2+) or phospholipids efficiently. Crystallography reveals that changes in the orientations of critical Ca(2+) ligands, and perhaps their flexibility, render the rat synaptotagmin 4 C(2)B domain unable to form full Ca(2+)-binding sites. These results indicate that synaptotagmin 4 is a Ca(2+) sensor in the fly but not in the rat, that the Ca(2+)-binding properties of C(2) domains cannot be reliably predicted from sequence analyses, and that proteins clearly identified as orthologs may nevertheless have markedly different functional properties.
Structural basis for the evolutionary inactivation of Ca2+ binding to synaptotagmin 4.,Dai H, Shin OH, Machius M, Tomchick DR, Sudhof TC, Rizo J Nat Struct Mol Biol. 2004 Sep;11(9):844-9. Epub 2004 Aug 15. PMID:15311271[3]
From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.
See Also
References
- ↑ Bharat V, Siebrecht M, Burk K, Ahmed S, Reissner C, Kohansal-Nodehi M, Steubler V, Zweckstetter M, Ting JT, Dean C. Capture of Dense Core Vesicles at Synapses by JNK-Dependent Phosphorylation of Synaptotagmin-4. Cell Rep. 2017 Nov 21;21(8):2118-2133. PMID:29166604 doi:10.1016/j.celrep.2017.10.084
- ↑ Ullrich B, Li C, Zhang JZ, McMahon H, Anderson RG, Geppert M, Südhof TC. Functional properties of multiple synaptotagmins in brain. Neuron. 1994 Dec;13(6):1281-91. PMID:7993622 doi:10.1016/0896-6273(94)90415-4
- ↑ Dai H, Shin OH, Machius M, Tomchick DR, Sudhof TC, Rizo J. Structural basis for the evolutionary inactivation of Ca2+ binding to synaptotagmin 4. Nat Struct Mol Biol. 2004 Sep;11(9):844-9. Epub 2004 Aug 15. PMID:15311271 doi:10.1038/nsmb817
|