|
|
(One intermediate revision not shown.) |
Line 3: |
Line 3: |
| <StructureSection load='2c4j' size='340' side='right'caption='[[2c4j]], [[Resolution|resolution]] 1.35Å' scene=''> | | <StructureSection load='2c4j' size='340' side='right'caption='[[2c4j]], [[Resolution|resolution]] 1.35Å' scene=''> |
| == Structural highlights == | | == Structural highlights == |
- | <table><tr><td colspan='2'>[[2c4j]] is a 4 chain structure with sequence from [http://en.wikipedia.org/wiki/Human Human]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=2C4J OCA]. For a <b>guided tour on the structure components</b> use [http://oca.weizmann.ac.il/oca-docs/fgij/fg.htm?mol=2C4J FirstGlance]. <br> | + | <table><tr><td colspan='2'>[[2c4j]] is a 4 chain structure with sequence from [https://en.wikipedia.org/wiki/Homo_sapiens Homo sapiens]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=2C4J OCA]. For a <b>guided tour on the structure components</b> use [https://proteopedia.org/fgij/fg.htm?mol=2C4J FirstGlance]. <br> |
- | </td></tr><tr id='ligand'><td class="sblockLbl"><b>[[Ligand|Ligands:]]</b></td><td class="sblockDat"><scene name='pdbligand=GSO:L-GAMMA-GLUTAMYL-S-[(2S)-2-HYDROXY-2-PHENYLETHYL]-L-CYSTEINYLGLYCINE'>GSO</scene></td></tr> | + | </td></tr><tr id='method'><td class="sblockLbl"><b>[[Empirical_models|Method:]]</b></td><td class="sblockDat" id="methodDat">X-ray diffraction, [[Resolution|Resolution]] 1.35Å</td></tr> |
- | <tr id='related'><td class="sblockLbl"><b>[[Related_structure|Related:]]</b></td><td class="sblockDat">[[1hna|1hna]], [[1hnb|1hnb]], [[1hnc|1hnc]], [[1xw5|1xw5]], [[1ykc|1ykc]], [[2ab6|2ab6]], [[2gtu|2gtu]], [[3gtu|3gtu]]</td></tr> | + | <tr id='ligand'><td class="sblockLbl"><b>[[Ligand|Ligands:]]</b></td><td class="sblockDat" id="ligandDat"><scene name='pdbligand=GSO:L-GAMMA-GLUTAMYL-S-[(2S)-2-HYDROXY-2-PHENYLETHYL]-L-CYSTEINYLGLYCINE'>GSO</scene></td></tr> |
- | <tr id='activity'><td class="sblockLbl"><b>Activity:</b></td><td class="sblockDat"><span class='plainlinks'>[http://en.wikipedia.org/wiki/Glutathione_transferase Glutathione transferase], with EC number [http://www.brenda-enzymes.info/php/result_flat.php4?ecno=2.5.1.18 2.5.1.18] </span></td></tr>
| + | <tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[https://proteopedia.org/fgij/fg.htm?mol=2c4j FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=2c4j OCA], [https://pdbe.org/2c4j PDBe], [https://www.rcsb.org/pdb/explore.do?structureId=2c4j RCSB], [https://www.ebi.ac.uk/pdbsum/2c4j PDBsum], [https://prosat.h-its.org/prosat/prosatexe?pdbcode=2c4j ProSAT]</span></td></tr> |
- | <tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[http://oca.weizmann.ac.il/oca-docs/fgij/fg.htm?mol=2c4j FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=2c4j OCA], [http://pdbe.org/2c4j PDBe], [http://www.rcsb.org/pdb/explore.do?structureId=2c4j RCSB], [http://www.ebi.ac.uk/pdbsum/2c4j PDBsum], [http://prosat.h-its.org/prosat/prosatexe?pdbcode=2c4j ProSAT]</span></td></tr> | + | |
| </table> | | </table> |
| + | == Function == |
| + | [https://www.uniprot.org/uniprot/GSTM2_HUMAN GSTM2_HUMAN] Conjugation of reduced glutathione to a wide number of exogenous and endogenous hydrophobic electrophiles.<ref>PMID:16549767</ref> |
| == Evolutionary Conservation == | | == Evolutionary Conservation == |
| [[Image:Consurf_key_small.gif|200px|right]] | | [[Image:Consurf_key_small.gif|200px|right]] |
Line 30: |
Line 31: |
| | | |
| ==See Also== | | ==See Also== |
- | *[[Glutathione S-transferase|Glutathione S-transferase]] | + | *[[Glutathione S-transferase 3D structures|Glutathione S-transferase 3D structures]] |
| == References == | | == References == |
| <references/> | | <references/> |
| __TOC__ | | __TOC__ |
| </StructureSection> | | </StructureSection> |
- | [[Category: Glutathione transferase]] | + | [[Category: Homo sapiens]] |
- | [[Category: Human]]
| + | |
| [[Category: Large Structures]] | | [[Category: Large Structures]] |
- | [[Category: Andersson, M]] | + | [[Category: Andersson M]] |
- | [[Category: Ivarsson, Y]] | + | [[Category: Ivarsson Y]] |
- | [[Category: Mannervik, B]] | + | [[Category: Mannervik B]] |
- | [[Category: Olin, B]] | + | [[Category: Olin B]] |
- | [[Category: Tars, K]] | + | [[Category: Tars K]] |
- | [[Category: Glutathione]]
| + | |
- | [[Category: M2-2]]
| + | |
- | [[Category: Multigene family]]
| + | |
- | [[Category: Transferase]]
| + | |
| Structural highlights
Function
GSTM2_HUMAN Conjugation of reduced glutathione to a wide number of exogenous and endogenous hydrophobic electrophiles.[1]
Evolutionary Conservation
Check, as determined by ConSurfDB. You may read the explanation of the method and the full data available from ConSurf.
Publication Abstract from PubMed
All molecular species in an organism are connected physically and functionally to other molecules. In evolving systems, it is not obvious to what extent functional properties of a protein can change to selective advantage and leave intact favorable traits previously acquired. This uncertainty has particular significance in the evolution of novel pathways for detoxication, because an organism challenged with new xenobiotics in the environment may still require biotransformation of previously encountered toxins. Positive selection has been proposed as an evolutionary mechanism for facile adaptive responses of proteins to changing conditions. Here, we show, by saturation mutagenesis, that mutations of a hypervariable residue in human glutathione transferase M2-2 can differentially change the enzyme's substrate-activity profile with alternative substrates and, furthermore, enable or disable dissimilar chemical reactions. Crystal structures demonstrate that activity with epoxides is enabled through removal of steric hindrance from a methyl group, whereas activities with an orthoquinone and a nitroso donor are maintained in the variant enzymes. Given the diversity of cellular activities in which a single protein can be engaged, the selective transmutation of functional properties has general significance in molecular evolution.
Alternative mutations of a positively selected residue elicit gain or loss of functionalities in enzyme evolution.,Norrgard MA, Ivarsson Y, Tars K, Mannervik B Proc Natl Acad Sci U S A. 2006 Mar 28;103(13):4876-81. Epub 2006 Mar 20. PMID:16549767[2]
From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.
See Also
References
- ↑ Norrgard MA, Ivarsson Y, Tars K, Mannervik B. Alternative mutations of a positively selected residue elicit gain or loss of functionalities in enzyme evolution. Proc Natl Acad Sci U S A. 2006 Mar 28;103(13):4876-81. Epub 2006 Mar 20. PMID:16549767
- ↑ Norrgard MA, Ivarsson Y, Tars K, Mannervik B. Alternative mutations of a positively selected residue elicit gain or loss of functionalities in enzyme evolution. Proc Natl Acad Sci U S A. 2006 Mar 28;103(13):4876-81. Epub 2006 Mar 20. PMID:16549767
|