|
|
(One intermediate revision not shown.) |
Line 3: |
Line 3: |
| <StructureSection load='1coz' size='340' side='right'caption='[[1coz]], [[Resolution|resolution]] 2.00Å' scene=''> | | <StructureSection load='1coz' size='340' side='right'caption='[[1coz]], [[Resolution|resolution]] 2.00Å' scene=''> |
| == Structural highlights == | | == Structural highlights == |
- | <table><tr><td colspan='2'>[[1coz]] is a 2 chain structure. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=1COZ OCA]. For a <b>guided tour on the structure components</b> use [http://oca.weizmann.ac.il/oca-docs/fgij/fg.htm?mol=1COZ FirstGlance]. <br> | + | <table><tr><td colspan='2'>[[1coz]] is a 2 chain structure with sequence from [https://en.wikipedia.org/wiki/Bacillus_subtilis Bacillus subtilis]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=1COZ OCA]. For a <b>guided tour on the structure components</b> use [https://proteopedia.org/fgij/fg.htm?mol=1COZ FirstGlance]. <br> |
- | </td></tr><tr id='ligand'><td class="sblockLbl"><b>[[Ligand|Ligands:]]</b></td><td class="sblockDat"><scene name='pdbligand=CTP:CYTIDINE-5-TRIPHOSPHATE'>CTP</scene></td></tr> | + | </td></tr><tr id='method'><td class="sblockLbl"><b>[[Empirical_models|Method:]]</b></td><td class="sblockDat" id="methodDat">X-ray diffraction, [[Resolution|Resolution]] 2Å</td></tr> |
- | <tr id='activity'><td class="sblockLbl"><b>Activity:</b></td><td class="sblockDat"><span class='plainlinks'>[http://en.wikipedia.org/wiki/Glycerol-3-phosphate_cytidylyltransferase Glycerol-3-phosphate cytidylyltransferase], with EC number [http://www.brenda-enzymes.info/php/result_flat.php4?ecno=2.7.7.39 2.7.7.39] </span></td></tr> | + | <tr id='ligand'><td class="sblockLbl"><b>[[Ligand|Ligands:]]</b></td><td class="sblockDat" id="ligandDat"><scene name='pdbligand=CTP:CYTIDINE-5-TRIPHOSPHATE'>CTP</scene></td></tr> |
- | <tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[http://oca.weizmann.ac.il/oca-docs/fgij/fg.htm?mol=1coz FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=1coz OCA], [http://pdbe.org/1coz PDBe], [http://www.rcsb.org/pdb/explore.do?structureId=1coz RCSB], [http://www.ebi.ac.uk/pdbsum/1coz PDBsum], [http://prosat.h-its.org/prosat/prosatexe?pdbcode=1coz ProSAT]</span></td></tr> | + | <tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[https://proteopedia.org/fgij/fg.htm?mol=1coz FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=1coz OCA], [https://pdbe.org/1coz PDBe], [https://www.rcsb.org/pdb/explore.do?structureId=1coz RCSB], [https://www.ebi.ac.uk/pdbsum/1coz PDBsum], [https://prosat.h-its.org/prosat/prosatexe?pdbcode=1coz ProSAT]</span></td></tr> |
| </table> | | </table> |
| == Function == | | == Function == |
- | [[http://www.uniprot.org/uniprot/TAGD_BACSU TAGD_BACSU]] Provides activated glycerol phosphate for teichoic acid synthesis, via incorporation into both the linkage unit and the teichoic acid polymer by TagB and TagF. | + | [https://www.uniprot.org/uniprot/TAGD_BACSU TAGD_BACSU] Provides activated glycerol phosphate for teichoic acid synthesis, via incorporation into both the linkage unit and the teichoic acid polymer by TagB and TagF. |
| == Evolutionary Conservation == | | == Evolutionary Conservation == |
| [[Image:Consurf_key_small.gif|200px|right]] | | [[Image:Consurf_key_small.gif|200px|right]] |
Line 33: |
Line 33: |
| __TOC__ | | __TOC__ |
| </StructureSection> | | </StructureSection> |
- | [[Category: Glycerol-3-phosphate cytidylyltransferase]] | + | [[Category: Bacillus subtilis]] |
| [[Category: Large Structures]] | | [[Category: Large Structures]] |
- | [[Category: Kent, C]] | + | [[Category: Kent C]] |
- | [[Category: Ludwig, M L]] | + | [[Category: Ludwig ML]] |
- | [[Category: Park, Y S]] | + | [[Category: Park YS]] |
- | [[Category: Sanker, S]] | + | [[Category: Sanker S]] |
- | [[Category: Weber, C H]] | + | [[Category: Weber CH]] |
- | [[Category: Transferase]]
| + | |
| Structural highlights
Function
TAGD_BACSU Provides activated glycerol phosphate for teichoic acid synthesis, via incorporation into both the linkage unit and the teichoic acid polymer by TagB and TagF.
Evolutionary Conservation
Check, as determined by ConSurfDB. You may read the explanation of the method and the full data available from ConSurf.
Publication Abstract from PubMed
BACKGROUND: The formation of critical intermediates in the biosynthesis of lipids and complex carbohydrates is carried out by cytidylyltransferases, which utilize CTP to form activated CDP-alcohols or CMP-acid sugars plus inorganic pyrophosphate. Several cytidylyltransferases are related and constitute a conserved family of enzymes. The eukaryotic members of the family are complex enzymes with multiple regulatory regions or repeated catalytic domains, whereas the bacterial enzyme, CTP:glycerol-3-phosphate cytidylyltransferase (GCT), contains only the catalytic domain. Thus, GCT provides an excellent model for the study of catalysis by the eukaryotic cytidylyltransferases. RESULTS: The crystal structure of GCT from Bacillus subtilis has been determined by multiwavelength anomalous diffraction using a mercury derivative and refined to 2.0 A resolution (R(factor) 0.196; R(free) 0.255). GCT is a homodimer; each monomer comprises an alpha/beta fold with a central 3-2-1-4-5 parallel beta sheet. Additional helices and loops extending from the alpha/beta core form a bowl that binds substrates. CTP, bound at each active site of the homodimer, interacts with the conserved (14)HXGH and (113)RTXGISTT motifs. The dimer interface incorporates part of a third motif, (63)RYVDEVI, and includes hydrophobic residues adjoining the HXGH sequence. CONCLUSIONS: Structure superpositions relate GCT to the catalytic domains from class I aminoacyl-tRNA synthetases, and thus expand the tRNA synthetase family of folds to include the catalytic domains of the family of cytidylyltransferases. GCT and aminoacyl-tRNA synthetases catalyze analogous reactions, bind nucleotides in similar U-shaped conformations, and depend on histidines from analogous HXGH motifs for activity. The structural and other similarities support proposals that GCT, like the synthetases, catalyzes nucleotidyl transfer by stabilizing a pentavalent transition state at the alpha-phosphate of CTP.
A prototypical cytidylyltransferase: CTP:glycerol-3-phosphate cytidylyltransferase from bacillus subtilis.,Weber CH, Park YS, Sanker S, Kent C, Ludwig ML Structure. 1999 Sep 15;7(9):1113-24. PMID:10508782[1]
From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.
References
- ↑ Weber CH, Park YS, Sanker S, Kent C, Ludwig ML. A prototypical cytidylyltransferase: CTP:glycerol-3-phosphate cytidylyltransferase from bacillus subtilis. Structure. 1999 Sep 15;7(9):1113-24. PMID:10508782
|