6n1y

From Proteopedia

(Difference between revisions)
Jump to: navigation, search
Current revision (06:43, 11 October 2023) (edit) (undo)
 
(2 intermediate revisions not shown.)
Line 3: Line 3:
<StructureSection load='6n1y' size='340' side='right'caption='[[6n1y]], [[Resolution|resolution]] 2.15&Aring;' scene=''>
<StructureSection load='6n1y' size='340' side='right'caption='[[6n1y]], [[Resolution|resolution]] 2.15&Aring;' scene=''>
== Structural highlights ==
== Structural highlights ==
-
<table><tr><td colspan='2'>[[6n1y]] is a 4 chain structure. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=6N1Y OCA]. For a <b>guided tour on the structure components</b> use [http://oca.weizmann.ac.il/oca-docs/fgij/fg.htm?mol=6N1Y FirstGlance]. <br>
+
<table><tr><td colspan='2'>[[6n1y]] is a 4 chain structure with sequence from [https://en.wikipedia.org/wiki/Neurospora_crassa Neurospora crassa]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=6N1Y OCA]. For a <b>guided tour on the structure components</b> use [https://proteopedia.org/fgij/fg.htm?mol=6N1Y FirstGlance]. <br>
-
</td></tr><tr id='ligand'><td class="sblockLbl"><b>[[Ligand|Ligands:]]</b></td><td class="sblockDat"><scene name='pdbligand=CL:CHLORIDE+ION'>CL</scene>, <scene name='pdbligand=FE2:FE+(II)+ION'>FE2</scene></td></tr>
+
</td></tr><tr id='method'><td class="sblockLbl"><b>[[Empirical_models|Method:]]</b></td><td class="sblockDat" id="methodDat">X-ray diffraction, [[Resolution|Resolution]] 2.15&#8491;</td></tr>
-
<tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[http://oca.weizmann.ac.il/oca-docs/fgij/fg.htm?mol=6n1y FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=6n1y OCA], [http://pdbe.org/6n1y PDBe], [http://www.rcsb.org/pdb/explore.do?structureId=6n1y RCSB], [http://www.ebi.ac.uk/pdbsum/6n1y PDBsum], [http://prosat.h-its.org/prosat/prosatexe?pdbcode=6n1y ProSAT]</span></td></tr>
+
<tr id='ligand'><td class="sblockLbl"><b>[[Ligand|Ligands:]]</b></td><td class="sblockDat" id="ligandDat"><scene name='pdbligand=CL:CHLORIDE+ION'>CL</scene>, <scene name='pdbligand=FE2:FE+(II)+ION'>FE2</scene></td></tr>
 +
<tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[https://proteopedia.org/fgij/fg.htm?mol=6n1y FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=6n1y OCA], [https://pdbe.org/6n1y PDBe], [https://www.rcsb.org/pdb/explore.do?structureId=6n1y RCSB], [https://www.ebi.ac.uk/pdbsum/6n1y PDBsum], [https://prosat.h-its.org/prosat/prosatexe?pdbcode=6n1y ProSAT]</span></td></tr>
</table>
</table>
 +
== Function ==
 +
[https://www.uniprot.org/uniprot/A0A0B0DIC8_NEUCS A0A0B0DIC8_NEUCS]
 +
<div style="background-color:#fffaf0;">
 +
== Publication Abstract from PubMed ==
 +
Carotenoid cleavage dioxygenases (CCDs) use a non-heme Fe(II) cofactor to split alkene bonds of carotenoid and stilbenoid substrates. The iron centers of CCDs are typically five-coordinate in their resting states, with solvent occupying an exchangeable site. The involvement of this iron-bound solvent in CCD catalysis has not been experimentally addressed, but computational studies suggest two possible roles: 1) solvent dissociation provides a coordination site for O2, or 2) solvent remains bound to iron but changes its equilibrium position to allow O2 binding and potentially acts as a proton source. To test these predictions, we investigated isotope effects (H2O versus D2O) on two stilbenoid-cleaving CCDs, Novosphingobium aromaticivorans oxygenase 2 (NOV2) and Neurospora crassa carotenoid oxygenase 1 (CAO1), using piceatannol as a substrate. NOV2 exhibited an inverse isotope effect (kH/kD ~0.6) in an air-saturated buffer, suggesting that solvent dissociates from iron during the catalytic cycle. By contrast, CAO1 displayed a normal isotope effect (kH/kD ~1.7) suggesting proton transfer in the rate-limiting step. X-ray absorption spectroscopy on NOV2 and CAO1 indicated that the protonation states of the iron ligands are unchanged within the pH 6.5-8.5 and that the Fe(II)-aquo bond is minimally altered by substrate binding. We pinpointed the origin of the differential kinetic behaviors of NOV2 and CAO1 to a single amino acid difference near the solvent-binding site of iron, and X-ray crystallography revealed that the substitution alters binding of diffusible ligand to the iron center. We conclude that solvent-iron dissociation and proton transfer are both associated with the CCD catalytic mechanism.
 +
 +
Evidence for distinct rate-limiting steps in the cleavage of alkenes by carotenoid cleavage dioxygenases.,Khadka N, Farquhar ER, Hill HE, Shi W, von Lintig J, Kiser PD J Biol Chem. 2019 May 28. pii: RA119.007535. doi: 10.1074/jbc.RA119.007535. PMID:31138651<ref>PMID:31138651</ref>
 +
 +
From MEDLINE&reg;/PubMed&reg;, a database of the U.S. National Library of Medicine.<br>
 +
</div>
 +
<div class="pdbe-citations 6n1y" style="background-color:#fffaf0;"></div>
 +
== References ==
 +
<references/>
__TOC__
__TOC__
</StructureSection>
</StructureSection>
[[Category: Large Structures]]
[[Category: Large Structures]]
-
[[Category: Khadka, N]]
+
[[Category: Neurospora crassa]]
-
[[Category: Kiser, P D]]
+
[[Category: Khadka N]]
-
[[Category: Beta-propeller]]
+
[[Category: Kiser PD]]
-
[[Category: Dioxygenase]]
+
-
[[Category: Non-heme iron protein]]
+
-
[[Category: Oxidoreductase]]
+

Current revision

Structure of L509V CAO1 - growth condition 1

PDB ID 6n1y

Drag the structure with the mouse to rotate

Proteopedia Page Contributors and Editors (what is this?)

OCA

Personal tools