|
|
(4 intermediate revisions not shown.) |
Line 1: |
Line 1: |
| | | |
| ==Cryo-EM structure of NCP_THF2(-3)== | | ==Cryo-EM structure of NCP_THF2(-3)== |
- | <StructureSection load='6r94' size='340' side='right'caption='[[6r94]], [[Resolution|resolution]] 3.50Å' scene=''> | + | <SX load='6r94' size='340' side='right' viewer='molstar' caption='[[6r94]], [[Resolution|resolution]] 3.50Å' scene=''> |
| == Structural highlights == | | == Structural highlights == |
- | <table><tr><td colspan='2'>[[6r94]] is a 10 chain structure. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=6R94 OCA]. For a <b>guided tour on the structure components</b> use [http://oca.weizmann.ac.il/oca-docs/fgij/fg.htm?mol=6R94 FirstGlance]. <br> | + | <table><tr><td colspan='2'>[[6r94]] is a 10 chain structure with sequence from [https://en.wikipedia.org/wiki/Homo_sapiens Homo sapiens]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=6R94 OCA]. For a <b>guided tour on the structure components</b> use [https://proteopedia.org/fgij/fg.htm?mol=6R94 FirstGlance]. <br> |
- | </td></tr><tr id='NonStdRes'><td class="sblockLbl"><b>[[Non-Standard_Residue|NonStd Res:]]</b></td><td class="sblockDat"><scene name='pdbligand=3DR:1,2-DIDEOXYRIBOFURANOSE-5-PHOSPHATE'>3DR</scene></td></tr> | + | </td></tr><tr id='method'><td class="sblockLbl"><b>[[Empirical_models|Method:]]</b></td><td class="sblockDat" id="methodDat">Electron Microscopy, [[Resolution|Resolution]] 3.5Å</td></tr> |
- | <tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[http://oca.weizmann.ac.il/oca-docs/fgij/fg.htm?mol=6r94 FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=6r94 OCA], [http://pdbe.org/6r94 PDBe], [http://www.rcsb.org/pdb/explore.do?structureId=6r94 RCSB], [http://www.ebi.ac.uk/pdbsum/6r94 PDBsum], [http://prosat.h-its.org/prosat/prosatexe?pdbcode=6r94 ProSAT]</span></td></tr> | + | <tr id='ligand'><td class="sblockLbl"><b>[[Ligand|Ligands:]]</b></td><td class="sblockDat" id="ligandDat"><scene name='pdbligand=3DR:1,2-DIDEOXYRIBOFURANOSE-5-PHOSPHATE'>3DR</scene></td></tr> |
| + | <tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[https://proteopedia.org/fgij/fg.htm?mol=6r94 FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=6r94 OCA], [https://pdbe.org/6r94 PDBe], [https://www.rcsb.org/pdb/explore.do?structureId=6r94 RCSB], [https://www.ebi.ac.uk/pdbsum/6r94 PDBsum], [https://prosat.h-its.org/prosat/prosatexe?pdbcode=6r94 ProSAT]</span></td></tr> |
| </table> | | </table> |
| == Function == | | == Function == |
- | [[http://www.uniprot.org/uniprot/H2B1J_HUMAN H2B1J_HUMAN]] Core component of nucleosome. Nucleosomes wrap and compact DNA into chromatin, limiting DNA accessibility to the cellular machineries which require DNA as a template. Histones thereby play a central role in transcription regulation, DNA repair, DNA replication and chromosomal stability. DNA accessibility is regulated via a complex set of post-translational modifications of histones, also called histone code, and nucleosome remodeling.<ref>PMID:11859126</ref> <ref>PMID:12860195</ref> <ref>PMID:15019208</ref> Has broad antibacterial activity. May contribute to the formation of the functional antimicrobial barrier of the colonic epithelium, and to the bactericidal activity of amniotic fluid.<ref>PMID:11859126</ref> <ref>PMID:12860195</ref> <ref>PMID:15019208</ref> | + | [https://www.uniprot.org/uniprot/H31_HUMAN H31_HUMAN] |
| <div style="background-color:#fffaf0;"> | | <div style="background-color:#fffaf0;"> |
| == Publication Abstract from PubMed == | | == Publication Abstract from PubMed == |
Line 18: |
Line 19: |
| </div> | | </div> |
| <div class="pdbe-citations 6r94" style="background-color:#fffaf0;"></div> | | <div class="pdbe-citations 6r94" style="background-color:#fffaf0;"></div> |
| + | |
| + | ==See Also== |
| + | *[[Histone 3D structures|Histone 3D structures]] |
| == References == | | == References == |
| <references/> | | <references/> |
| __TOC__ | | __TOC__ |
- | </StructureSection> | + | </SX> |
| + | [[Category: Homo sapiens]] |
| [[Category: Large Structures]] | | [[Category: Large Structures]] |
- | [[Category: Bunker, R D]] | + | [[Category: Bunker RD]] |
- | [[Category: Cavadini, S]] | + | [[Category: Cavadini S]] |
- | [[Category: Matsumoto, S]] | + | [[Category: Matsumoto S]] |
- | [[Category: Thoma, N H]] | + | [[Category: Thoma NH]] |
- | [[Category: 6-4 photoproduct]]
| + | |
- | [[Category: Dna binding protein]]
| + | |
- | [[Category: Dna damage]]
| + | |
- | [[Category: Nucleosome]]
| + | |
| Structural highlights
Function
H31_HUMAN
Publication Abstract from PubMed
Access to DNA packaged in nucleosomes is critical for gene regulation, DNA replication and DNA repair. In humans, the UV-damaged DNA-binding protein (UV-DDB) complex detects UV-light-induced pyrimidine dimers throughout the genome; however, it remains unknown how these lesions are recognized in chromatin, in which nucleosomes restrict access to DNA. Here we report cryo-electron microscopy structures of UV-DDB bound to nucleosomes bearing a 6-4 pyrimidine-pyrimidone dimer or a DNA-damage mimic in various positions. We find that UV-DDB binds UV-damaged nucleosomes at lesions located in the solvent-facing minor groove without affecting the overall nucleosome architecture. In the case of buried lesions that face the histone core, UV-DDB changes the predominant translational register of the nucleosome and selectively binds the lesion in an accessible, exposed position. Our findings explain how UV-DDB detects occluded lesions in strongly positioned nucleosomes, and identify slide-assisted site exposure as a mechanism by which high-affinity DNA-binding proteins can access otherwise occluded sites in nucleosomal DNA.
DNA damage detection in nucleosomes involves DNA register shifting.,Matsumoto S, Cavadini S, Bunker RD, Grand RS, Potenza A, Rabl J, Yamamoto J, Schenk AD, Schubeler D, Iwai S, Sugasawa K, Kurumizaka H, Thoma NH Nature. 2019 May 29. pii: 10.1038/s41586-019-1259-3. doi:, 10.1038/s41586-019-1259-3. PMID:31142837[1]
From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.
See Also
References
- ↑ Matsumoto S, Cavadini S, Bunker RD, Grand RS, Potenza A, Rabl J, Yamamoto J, Schenk AD, Schubeler D, Iwai S, Sugasawa K, Kurumizaka H, Thoma NH. DNA damage detection in nucleosomes involves DNA register shifting. Nature. 2019 May 29. pii: 10.1038/s41586-019-1259-3. doi:, 10.1038/s41586-019-1259-3. PMID:31142837 doi:http://dx.doi.org/10.1038/s41586-019-1259-3
|