6p8j
From Proteopedia
(Difference between revisions)
m (Protected "6p8j" [edit=sysop:move=sysop]) |
|||
(2 intermediate revisions not shown.) | |||
Line 1: | Line 1: | ||
- | '''Unreleased structure''' | ||
- | + | ==Structure of P. aeruginosa ATCC27853 CdnD D62N/D64N mutant bound to ATP== | |
+ | <StructureSection load='6p8j' size='340' side='right'caption='[[6p8j]], [[Resolution|resolution]] 1.47Å' scene=''> | ||
+ | == Structural highlights == | ||
+ | <table><tr><td colspan='2'>[[6p8j]] is a 4 chain structure with sequence from [https://en.wikipedia.org/wiki/Pseudomonas_aeruginosa Pseudomonas aeruginosa]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=6P8J OCA]. For a <b>guided tour on the structure components</b> use [https://proteopedia.org/fgij/fg.htm?mol=6P8J FirstGlance]. <br> | ||
+ | </td></tr><tr id='method'><td class="sblockLbl"><b>[[Empirical_models|Method:]]</b></td><td class="sblockDat" id="methodDat">X-ray diffraction, [[Resolution|Resolution]] 1.47Å</td></tr> | ||
+ | <tr id='ligand'><td class="sblockLbl"><b>[[Ligand|Ligands:]]</b></td><td class="sblockDat" id="ligandDat"><scene name='pdbligand=ATP:ADENOSINE-5-TRIPHOSPHATE'>ATP</scene>, <scene name='pdbligand=CL:CHLORIDE+ION'>CL</scene>, <scene name='pdbligand=MG:MAGNESIUM+ION'>MG</scene></td></tr> | ||
+ | <tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[https://proteopedia.org/fgij/fg.htm?mol=6p8j FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=6p8j OCA], [https://pdbe.org/6p8j PDBe], [https://www.rcsb.org/pdb/explore.do?structureId=6p8j RCSB], [https://www.ebi.ac.uk/pdbsum/6p8j PDBsum], [https://prosat.h-its.org/prosat/prosatexe?pdbcode=6p8j ProSAT]</span></td></tr> | ||
+ | </table> | ||
+ | == Function == | ||
+ | [https://www.uniprot.org/uniprot/CDND_PSEAI CDND_PSEAI] CBASS (cyclic oligonucleotide-based antiphage signaling system) provides immunity against bacteriophage. The CD-NTase protein synthesizes cyclic nucleotides in response to infection; these serve as specific second messenger signals. The signals activate a diverse range of effectors, leading to bacterial cell death and thus abortive phage infection. A type III-C(AAA) CBASS system (PubMed:32839535).<ref>PMID:31932165</ref> <ref>PMID:32839535</ref> Cyclic nucleotide synthase that upon activation catalyzes the synthesis of 3',3',3'-cyclic AMP-AMP-AMP (3',3',3'-c-tri-AMP or cAAA) as the major product, and 3',3'-c-di-AMP as a minor product at pH 8.5. At pH 7.5 also makes 3',3',3'-cyclic AMP-AMP-GMP (cAAG). Binds strongly to ATP and much less well to GTP.<ref>PMID:31932165</ref> | ||
+ | <div style="background-color:#fffaf0;"> | ||
+ | == Publication Abstract from PubMed == | ||
+ | Bacteria are continually challenged by foreign invaders, including bacteriophages, and have evolved a variety of defenses against these invaders. Here, we describe the structural and biochemical mechanisms of a bacteriophage immunity pathway found in a broad array of bacteria, including E. coli and Pseudomonas aeruginosa. This pathway uses eukaryotic-like HORMA domain proteins that recognize specific peptides, then bind and activate a cGAS/DncV-like nucleotidyltransferase (CD-NTase) to generate a cyclic triadenylate (cAAA) second messenger; cAAA in turn activates an endonuclease effector, NucC. Signaling is attenuated by a homolog of the AAA+ ATPase Pch2/TRIP13, which binds and disassembles the active HORMA-CD-NTase complex. When expressed in non-pathogenic E. coli, this pathway confers immunity against bacteriophage lambda through an abortive infection mechanism. Our findings reveal the molecular mechanisms of a bacterial defense pathway integrating a cGAS-like nucleotidyltransferase with HORMA domain proteins for threat sensing through protein detection and negative regulation by a Trip13 ATPase. | ||
- | + | HORMA Domain Proteins and a Trip13-like ATPase Regulate Bacterial cGAS-like Enzymes to Mediate Bacteriophage Immunity.,Ye Q, Lau RK, Mathews IT, Birkholz EA, Watrous JD, Azimi CS, Pogliano J, Jain M, Corbett KD Mol Cell. 2019 Dec 31. pii: S1097-2765(19)30922-0. doi:, 10.1016/j.molcel.2019.12.009. PMID:31932165<ref>PMID:31932165</ref> | |
- | + | From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.<br> | |
- | [[Category: | + | </div> |
+ | <div class="pdbe-citations 6p8j" style="background-color:#fffaf0;"></div> | ||
+ | == References == | ||
+ | <references/> | ||
+ | __TOC__ | ||
+ | </StructureSection> | ||
+ | [[Category: Large Structures]] | ||
+ | [[Category: Pseudomonas aeruginosa]] | ||
+ | [[Category: Corbett KD]] | ||
+ | [[Category: Ye Q]] |
Current revision
Structure of P. aeruginosa ATCC27853 CdnD D62N/D64N mutant bound to ATP
|