|
|
(One intermediate revision not shown.) |
Line 3: |
Line 3: |
| <StructureSection load='1g87' size='340' side='right'caption='[[1g87]], [[Resolution|resolution]] 1.60Å' scene=''> | | <StructureSection load='1g87' size='340' side='right'caption='[[1g87]], [[Resolution|resolution]] 1.60Å' scene=''> |
| == Structural highlights == | | == Structural highlights == |
- | <table><tr><td colspan='2'>[[1g87]] is a 2 chain structure with sequence from [http://en.wikipedia.org/wiki/(in_press)_ruminiclostridium_cellulolyticum (in press) ruminiclostridium cellulolyticum]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=1G87 OCA]. For a <b>guided tour on the structure components</b> use [http://oca.weizmann.ac.il/oca-docs/fgij/fg.htm?mol=1G87 FirstGlance]. <br> | + | <table><tr><td colspan='2'>[[1g87]] is a 2 chain structure with sequence from [https://en.wikipedia.org/wiki/Ruminiclostridium_cellulolyticum Ruminiclostridium cellulolyticum]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=1G87 OCA]. For a <b>guided tour on the structure components</b> use [https://proteopedia.org/fgij/fg.htm?mol=1G87 FirstGlance]. <br> |
- | </td></tr><tr id='ligand'><td class="sblockLbl"><b>[[Ligand|Ligands:]]</b></td><td class="sblockDat"><scene name='pdbligand=CA:CALCIUM+ION'>CA</scene>, <scene name='pdbligand=EDO:1,2-ETHANEDIOL'>EDO</scene>, <scene name='pdbligand=GOL:GLYCEROL'>GOL</scene>, <scene name='pdbligand=MG:MAGNESIUM+ION'>MG</scene></td></tr> | + | </td></tr><tr id='method'><td class="sblockLbl"><b>[[Empirical_models|Method:]]</b></td><td class="sblockDat" id="methodDat">X-ray diffraction, [[Resolution|Resolution]] 1.6Å</td></tr> |
- | <tr id='gene'><td class="sblockLbl"><b>[[Gene|Gene:]]</b></td><td class="sblockDat">CELCCG ([http://www.ncbi.nlm.nih.gov/Taxonomy/Browser/wwwtax.cgi?mode=Info&srchmode=5&id=1521 (in press) Ruminiclostridium cellulolyticum])</td></tr>
| + | <tr id='ligand'><td class="sblockLbl"><b>[[Ligand|Ligands:]]</b></td><td class="sblockDat" id="ligandDat"><scene name='pdbligand=CA:CALCIUM+ION'>CA</scene>, <scene name='pdbligand=EDO:1,2-ETHANEDIOL'>EDO</scene>, <scene name='pdbligand=GOL:GLYCEROL'>GOL</scene>, <scene name='pdbligand=MG:MAGNESIUM+ION'>MG</scene></td></tr> |
- | <tr id='activity'><td class="sblockLbl"><b>Activity:</b></td><td class="sblockDat"><span class='plainlinks'>[http://en.wikipedia.org/wiki/Cellulase Cellulase], with EC number [http://www.brenda-enzymes.info/php/result_flat.php4?ecno=3.2.1.4 3.2.1.4] </span></td></tr>
| + | <tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[https://proteopedia.org/fgij/fg.htm?mol=1g87 FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=1g87 OCA], [https://pdbe.org/1g87 PDBe], [https://www.rcsb.org/pdb/explore.do?structureId=1g87 RCSB], [https://www.ebi.ac.uk/pdbsum/1g87 PDBsum], [https://prosat.h-its.org/prosat/prosatexe?pdbcode=1g87 ProSAT]</span></td></tr> |
- | <tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[http://oca.weizmann.ac.il/oca-docs/fgij/fg.htm?mol=1g87 FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=1g87 OCA], [http://pdbe.org/1g87 PDBe], [http://www.rcsb.org/pdb/explore.do?structureId=1g87 RCSB], [http://www.ebi.ac.uk/pdbsum/1g87 PDBsum], [http://prosat.h-its.org/prosat/prosatexe?pdbcode=1g87 ProSAT]</span></td></tr> | + | |
| </table> | | </table> |
| == Function == | | == Function == |
- | [[http://www.uniprot.org/uniprot/GUNG_CLOCE GUNG_CLOCE]] The biological conversion of cellulose to glucose generally requires three types of hydrolytic enzymes: (1) Endoglucanases which cut internal beta-1,4-glucosidic bonds; (2) Exocellobiohydrolases that cut the dissaccharide cellobiose from the non-reducing end of the cellulose polymer chain; (3) Beta-1,4-glucosidases which hydrolyze the cellobiose and other short cello-oligosaccharides to glucose. | + | [https://www.uniprot.org/uniprot/GUNG_RUMCH GUNG_RUMCH] The biological conversion of cellulose to glucose generally requires three types of hydrolytic enzymes: (1) Endoglucanases which cut internal beta-1,4-glucosidic bonds; (2) Exocellobiohydrolases that cut the disaccharide cellobiose from the non-reducing end of the cellulose polymer chain; (3) Beta-1,4-glucosidases which hydrolyze the cellobiose and other short cello-oligosaccharides to glucose. |
| == Evolutionary Conservation == | | == Evolutionary Conservation == |
| [[Image:Consurf_key_small.gif|200px|right]] | | [[Image:Consurf_key_small.gif|200px|right]] |
Line 32: |
Line 31: |
| | | |
| ==See Also== | | ==See Also== |
- | *[[Glucanase|Glucanase]] | + | *[[Glucanase 3D structures|Glucanase 3D structures]] |
| == References == | | == References == |
| <references/> | | <references/> |
| __TOC__ | | __TOC__ |
| </StructureSection> | | </StructureSection> |
- | [[Category: Cellulase]] | |
| [[Category: Large Structures]] | | [[Category: Large Structures]] |
- | [[Category: Aghajari, N]] | + | [[Category: Ruminiclostridium cellulolyticum]] |
- | [[Category: Belaich, A]] | + | [[Category: Aghajari N]] |
- | [[Category: Belaich, J P]] | + | [[Category: Belaich A]] |
- | [[Category: Driguez, H]] | + | [[Category: Belaich JP]] |
- | [[Category: Haser, R]] | + | [[Category: Driguez H]] |
- | [[Category: Mandelman, D]] | + | [[Category: Haser R]] |
- | [[Category: Beta barrel]]
| + | [[Category: Mandelman D]] |
- | [[Category: Cellulase 9g]]
| + | |
- | [[Category: Cellulose binding domain]]
| + | |
- | [[Category: Endoglucanase]]
| + | |
- | [[Category: Hydrolase]]
| + | |
| Structural highlights
Function
GUNG_RUMCH The biological conversion of cellulose to glucose generally requires three types of hydrolytic enzymes: (1) Endoglucanases which cut internal beta-1,4-glucosidic bonds; (2) Exocellobiohydrolases that cut the disaccharide cellobiose from the non-reducing end of the cellulose polymer chain; (3) Beta-1,4-glucosidases which hydrolyze the cellobiose and other short cello-oligosaccharides to glucose.
Evolutionary Conservation
Check, as determined by ConSurfDB. You may read the explanation of the method and the full data available from ConSurf.
Publication Abstract from PubMed
Complete cellulose degradation is the first step in the use of biomass as a source of renewable energy. To this end, the engineering of novel cellulase activity, the activity responsible for the hydrolysis of the beta-1,4-glycosidic bonds in cellulose, is a topic of great interest. The high-resolution X-ray crystal structure of a multidomain endoglucanase from Clostridium cellulolyticum has been determined at a 1.6-A resolution. The endoglucanase, Cel9G, is comprised of a family 9 catalytic domain attached to a family III(c) cellulose-binding domain. The two domains together form a flat platform onto which crystalline cellulose is suggested to bind and be fed into the active-site cleft for endolytic hydrolysis. To further dissect the structural basis of cellulose binding and hydrolysis, the structures of Cel9G in the presence of cellobiose, cellotriose, and a DP-10 thio-oligosaccharide inhibitor were resolved at resolutions of 1.7, 1.8, and 1.9 A, respectively.
X-Ray crystal structure of the multidomain endoglucanase Cel9G from Clostridium cellulolyticum complexed with natural and synthetic cello-oligosaccharides.,Mandelman D, Belaich A, Belaich JP, Aghajari N, Driguez H, Haser R J Bacteriol. 2003 Jul;185(14):4127-35. PMID:12837787[1]
From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.
See Also
References
- ↑ Mandelman D, Belaich A, Belaich JP, Aghajari N, Driguez H, Haser R. X-Ray crystal structure of the multidomain endoglucanase Cel9G from Clostridium cellulolyticum complexed with natural and synthetic cello-oligosaccharides. J Bacteriol. 2003 Jul;185(14):4127-35. PMID:12837787
|