6s4g
From Proteopedia
(Difference between revisions)
(One intermediate revision not shown.) | |||
Line 3: | Line 3: | ||
<StructureSection load='6s4g' size='340' side='right'caption='[[6s4g]], [[Resolution|resolution]] 1.67Å' scene=''> | <StructureSection load='6s4g' size='340' side='right'caption='[[6s4g]], [[Resolution|resolution]] 1.67Å' scene=''> | ||
== Structural highlights == | == Structural highlights == | ||
- | <table><tr><td colspan='2'>[[6s4g]] is a 4 chain structure. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=6S4G OCA]. For a <b>guided tour on the structure components</b> use [ | + | <table><tr><td colspan='2'>[[6s4g]] is a 4 chain structure with sequence from [https://en.wikipedia.org/wiki/Chromobacterium_violaceum_ATCC_12472 Chromobacterium violaceum ATCC 12472]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=6S4G OCA]. For a <b>guided tour on the structure components</b> use [https://proteopedia.org/fgij/fg.htm?mol=6S4G FirstGlance]. <br> |
- | </td></tr><tr id='ligand'><td class="sblockLbl"><b>[[Ligand|Ligands:]]</b></td><td class="sblockDat"><scene name='pdbligand=EDO:1,2-ETHANEDIOL'>EDO</scene>, <scene name='pdbligand=PEG:DI(HYDROXYETHYL)ETHER'>PEG</scene>, <scene name='pdbligand=PMP:4-DEOXY-4-AMINOPYRIDOXAL-5-PHOSPHATE'>PMP</scene | + | </td></tr><tr id='method'><td class="sblockLbl"><b>[[Empirical_models|Method:]]</b></td><td class="sblockDat" id="methodDat">X-ray diffraction, [[Resolution|Resolution]] 1.67Å</td></tr> |
- | + | <tr id='ligand'><td class="sblockLbl"><b>[[Ligand|Ligands:]]</b></td><td class="sblockDat" id="ligandDat"><scene name='pdbligand=EDO:1,2-ETHANEDIOL'>EDO</scene>, <scene name='pdbligand=PEG:DI(HYDROXYETHYL)ETHER'>PEG</scene>, <scene name='pdbligand=PMP:4-DEOXY-4-AMINOPYRIDOXAL-5-PHOSPHATE'>PMP</scene></td></tr> | |
- | <tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[ | + | <tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[https://proteopedia.org/fgij/fg.htm?mol=6s4g FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=6s4g OCA], [https://pdbe.org/6s4g PDBe], [https://www.rcsb.org/pdb/explore.do?structureId=6s4g RCSB], [https://www.ebi.ac.uk/pdbsum/6s4g PDBsum], [https://prosat.h-its.org/prosat/prosatexe?pdbcode=6s4g ProSAT]</span></td></tr> |
</table> | </table> | ||
+ | == Function == | ||
+ | [https://www.uniprot.org/uniprot/Q7NWG4_CHRVO Q7NWG4_CHRVO] | ||
+ | <div style="background-color:#fffaf0;"> | ||
+ | == Publication Abstract from PubMed == | ||
+ | One of the main factors hampering the implementation in industry of transaminase-based processes for the synthesis of enantiopure amines is their often low storage and operational stability. Our still limited understanding of the inactivation processes undermining the stability of wild-type transaminases represents an obstacle to improving their stability through enzyme engineering. In this paper we present a model describing the inactivation process of the well-characterized (S)-selective amine transaminase from Chromobacterium violaceum. The cornerstone of the model, supported by structural, computational, mutagenesis and biophysical data, is the central role of the catalytic lysine as a conformational switch. Upon breakage of the lysine-PLP Schiff base, the strain associated with the catalytically active lysine conformation is dissipated in a slow relaxation process capable of triggering the known structural rearrangements occurring in the holo-to-apo transition and ultimately promoting dimer dissociation. Due to the occurrence in the literature of similar PLP-dependent inactivation models valid for other non-transaminase enzymes belonging to the same fold-class, the role of the catalytic lysine as conformational switch might extend beyond the transaminase enzyme group and offer new insight to drive future non-trivial engineering strategies. | ||
+ | |||
+ | Insight into the dimer dissociation process of the Chromobacterium violaceum (S)-selective amine transaminase.,Ruggieri F, Campillo-Brocal JC, Chen S, Humble MS, Walse B, Logan DT, Berglund P Sci Rep. 2019 Nov 18;9(1):16946. doi: 10.1038/s41598-019-53177-3. PMID:31740704<ref>PMID:31740704</ref> | ||
+ | |||
+ | From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.<br> | ||
+ | </div> | ||
+ | <div class="pdbe-citations 6s4g" style="background-color:#fffaf0;"></div> | ||
+ | == References == | ||
+ | <references/> | ||
__TOC__ | __TOC__ | ||
</StructureSection> | </StructureSection> | ||
- | [[Category: | + | [[Category: Chromobacterium violaceum ATCC 12472]] |
[[Category: Large Structures]] | [[Category: Large Structures]] | ||
- | [[Category: Berglund | + | [[Category: Berglund P]] |
- | [[Category: | + | [[Category: Campillo Brocal JC]] |
- | [[Category: Humble | + | [[Category: Humble MS]] |
- | [[Category: Logan | + | [[Category: Logan DT]] |
- | [[Category: Ruggieri | + | [[Category: Ruggieri F]] |
- | [[Category: Walse | + | [[Category: Walse B]] |
- | + | ||
- | + | ||
- | + | ||
- | + | ||
- | + |
Current revision
Crystal structure of the omega transaminase from Chromobacterium violaceum in complex with PMP
|