|
|
(One intermediate revision not shown.) |
Line 3: |
Line 3: |
| <StructureSection load='1uy2' size='340' side='right'caption='[[1uy2]], [[Resolution|resolution]] 1.70Å' scene=''> | | <StructureSection load='1uy2' size='340' side='right'caption='[[1uy2]], [[Resolution|resolution]] 1.70Å' scene=''> |
| == Structural highlights == | | == Structural highlights == |
- | <table><tr><td colspan='2'>[[1uy2]] is a 1 chain structure with sequence from [http://en.wikipedia.org/wiki/Atcc_35414 Atcc 35414]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=1UY2 OCA]. For a <b>guided tour on the structure components</b> use [http://oca.weizmann.ac.il/oca-docs/fgij/fg.htm?mol=1UY2 FirstGlance]. <br> | + | <table><tr><td colspan='2'>[[1uy2]] is a 1 chain structure with sequence from [https://en.wikipedia.org/wiki/Thermoclostridium_stercorarium Thermoclostridium stercorarium]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=1UY2 OCA]. For a <b>guided tour on the structure components</b> use [https://proteopedia.org/fgij/fg.htm?mol=1UY2 FirstGlance]. <br> |
- | </td></tr><tr id='ligand'><td class="sblockLbl"><b>[[Ligand|Ligands:]]</b></td><td class="sblockDat"><scene name='pdbligand=CA:CALCIUM+ION'>CA</scene>, <scene name='pdbligand=GOL:GLYCEROL'>GOL</scene>, <scene name='pdbligand=NA:SODIUM+ION'>NA</scene>, <scene name='pdbligand=XYP:BETA-D-XYLOPYRANOSE'>XYP</scene></td></tr> | + | </td></tr><tr id='method'><td class="sblockLbl"><b>[[Empirical_models|Method:]]</b></td><td class="sblockDat" id="methodDat">X-ray diffraction, [[Resolution|Resolution]] 1.7Å</td></tr> |
- | <tr id='related'><td class="sblockLbl"><b>[[Related_structure|Related:]]</b></td><td class="sblockDat">[[1nae|1nae]], [[1od3|1od3]], [[1uy1|1uy1]], [[1uy3|1uy3]], [[1uy4|1uy4]]</td></tr>
| + | <tr id='ligand'><td class="sblockLbl"><b>[[Ligand|Ligands:]]</b></td><td class="sblockDat" id="ligandDat"><scene name='pdbligand=CA:CALCIUM+ION'>CA</scene>, <scene name='pdbligand=GOL:GLYCEROL'>GOL</scene>, <scene name='pdbligand=NA:SODIUM+ION'>NA</scene>, <scene name='pdbligand=PRD_900116:4beta-beta-xylobiose'>PRD_900116</scene>, <scene name='pdbligand=XYP:BETA-D-XYLOPYRANOSE'>XYP</scene></td></tr> |
- | <tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[http://oca.weizmann.ac.il/oca-docs/fgij/fg.htm?mol=1uy2 FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=1uy2 OCA], [http://pdbe.org/1uy2 PDBe], [http://www.rcsb.org/pdb/explore.do?structureId=1uy2 RCSB], [http://www.ebi.ac.uk/pdbsum/1uy2 PDBsum], [http://prosat.h-its.org/prosat/prosatexe?pdbcode=1uy2 ProSAT]</span></td></tr> | + | <tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[https://proteopedia.org/fgij/fg.htm?mol=1uy2 FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=1uy2 OCA], [https://pdbe.org/1uy2 PDBe], [https://www.rcsb.org/pdb/explore.do?structureId=1uy2 RCSB], [https://www.ebi.ac.uk/pdbsum/1uy2 PDBsum], [https://prosat.h-its.org/prosat/prosatexe?pdbcode=1uy2 ProSAT]</span></td></tr> |
| </table> | | </table> |
| + | == Function == |
| + | [https://www.uniprot.org/uniprot/XYNA1_THEST XYNA1_THEST] Endoxylanase that degrades arabinoxylan and glucuronoxylan to xylobiose and xylotriose (in vitro).<ref>PMID:11849546</ref> <ref>PMID:15256568</ref> |
| == Evolutionary Conservation == | | == Evolutionary Conservation == |
| [[Image:Consurf_key_small.gif|200px|right]] | | [[Image:Consurf_key_small.gif|200px|right]] |
Line 31: |
Line 33: |
| __TOC__ | | __TOC__ |
| </StructureSection> | | </StructureSection> |
- | [[Category: Atcc 35414]] | |
| [[Category: Large Structures]] | | [[Category: Large Structures]] |
- | [[Category: Boraston, A B]] | + | [[Category: Thermoclostridium stercorarium]] |
- | [[Category: Bueren, A L.Van]] | + | [[Category: Boraston AB]] |
- | [[Category: Carbohydrate-binding module]] | + | [[Category: Van Bueren AL]] |
- | [[Category: Protein structure]]
| + | |
- | [[Category: Protein-carbohydrate interaction]]
| + | |
- | [[Category: Thermodynamic]]
| + | |
- | [[Category: Xylan]]
| + | |
| Structural highlights
1uy2 is a 1 chain structure with sequence from Thermoclostridium stercorarium. Full crystallographic information is available from OCA. For a guided tour on the structure components use FirstGlance.
| Method: | X-ray diffraction, Resolution 1.7Å |
Ligands: | , , , , |
Resources: | FirstGlance, OCA, PDBe, RCSB, PDBsum, ProSAT |
Function
XYNA1_THEST Endoxylanase that degrades arabinoxylan and glucuronoxylan to xylobiose and xylotriose (in vitro).[1] [2]
Evolutionary Conservation
Check, as determined by ConSurfDB. You may read the explanation of the method and the full data available from ConSurf.
Publication Abstract from PubMed
The optimal ligands for many carbohydrate-binding proteins are often oligosaccharides comprising two, three, or more monosaccharide units. The binding affinity for these sugars is increased incrementally by contributions from binding subsites on the protein that accommodate the individual monosaccharide residues of the oligosaccharide. Here, we use CsCBM6-1, a xylan-specific type B carbohydrate-binding module (CBM) from Clostridium stercorarium falling into amino acid sequence family CBM6, as a model system to investigate the structural and thermodynamic contributions of binding subsites in this protein to carbohydrate recognition. The three-dimensional structures of uncomplexed CsCBM6-1 (at 1.8 A resolution) and bound to the oligosaccharides xylobiose, xylotriose, and xylotetraose (at 1.70 A, 1.89 A, and 1.69 A resolution, respectively) revealed the sequential occupation of four subsites within the binding site in the order of subsites 2, 3, 4 then 1. Overall, binding to all of the xylooligosaccharides tested was enthalpically favourable and entropically unfavourable, like most protein-carbohydrate interactions, with the primary subsites 2 and 3 providing the bulk of the free energy and enthalpy of binding. In contrast, the contributions to the changes in entropy of the non-primary subsites 1 and 4 to xylotriose and xylotetraose binding, respectively, were positive. This observation is remarkable, in that it shows that the 10-20-fold improvement in association constants for oligosaccharides longer than a disaccharide is facilitated by favourable entropic contributions from the non-primary binding subsites.
Binding sub-site dissection of a carbohydrate-binding module reveals the contribution of entropy to oligosaccharide recognition at "non-primary" binding subsites.,Lammerts van Bueren A, Boraston AB J Mol Biol. 2004 Jul 16;340(4):869-79. PMID:15223327[3]
From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.
References
- ↑ Boraston AB, McLean BW, Chen G, Li A, Warren RA, Kilburn DG. Co-operative binding of triplicate carbohydrate-binding modules from a thermophilic xylanase. Mol Microbiol. 2002 Jan;43(1):187-94. PMID:11849546 doi:10.1046/j.1365-2958.2002.02730.x
- ↑ Adelsberger H, Hertel C, Glawischnig E, Zverlov VV, Schwarz WH. Enzyme system of Clostridium stercorarium for hydrolysis of arabinoxylan: reconstitution of the in vivo system from recombinant enzymes. Microbiology (Reading). 2004 Jul;150(Pt 7):2257-2266. PMID:15256568 doi:10.1099/mic.0.27066-0
- ↑ Lammerts van Bueren A, Boraston AB. Binding sub-site dissection of a carbohydrate-binding module reveals the contribution of entropy to oligosaccharide recognition at "non-primary" binding subsites. J Mol Biol. 2004 Jul 16;340(4):869-79. PMID:15223327 doi:10.1016/j.jmb.2004.05.038
|