|
|
(2 intermediate revisions not shown.) |
Line 3: |
Line 3: |
| <StructureSection load='1bqc' size='340' side='right'caption='[[1bqc]], [[Resolution|resolution]] 1.50Å' scene=''> | | <StructureSection load='1bqc' size='340' side='right'caption='[[1bqc]], [[Resolution|resolution]] 1.50Å' scene=''> |
| == Structural highlights == | | == Structural highlights == |
- | <table><tr><td colspan='2'>[[1bqc]] is a 1 chain structure with sequence from [http://en.wikipedia.org/wiki/Thermobifida_fusca Thermobifida fusca]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=1BQC OCA]. For a <b>guided tour on the structure components</b> use [http://oca.weizmann.ac.il/oca-docs/fgij/fg.htm?mol=1BQC FirstGlance]. <br> | + | <table><tr><td colspan='2'>[[1bqc]] is a 1 chain structure with sequence from [https://en.wikipedia.org/wiki/Thermobifida_fusca Thermobifida fusca]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=1BQC OCA]. For a <b>guided tour on the structure components</b> use [https://proteopedia.org/fgij/fg.htm?mol=1BQC FirstGlance]. <br> |
- | </td></tr><tr id='activity'><td class="sblockLbl"><b>Activity:</b></td><td class="sblockDat"><span class='plainlinks'>[http://en.wikipedia.org/wiki/Mannan_endo-1,4-beta-mannosidase Mannan endo-1,4-beta-mannosidase], with EC number [http://www.brenda-enzymes.info/php/result_flat.php4?ecno=3.2.1.78 3.2.1.78] </span></td></tr> | + | </td></tr><tr id='method'><td class="sblockLbl"><b>[[Empirical_models|Method:]]</b></td><td class="sblockDat" id="methodDat">X-ray diffraction, [[Resolution|Resolution]] 1.5Å</td></tr> |
- | <tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[http://oca.weizmann.ac.il/oca-docs/fgij/fg.htm?mol=1bqc FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=1bqc OCA], [http://pdbe.org/1bqc PDBe], [http://www.rcsb.org/pdb/explore.do?structureId=1bqc RCSB], [http://www.ebi.ac.uk/pdbsum/1bqc PDBsum], [http://prosat.h-its.org/prosat/prosatexe?pdbcode=1bqc ProSAT]</span></td></tr> | + | <tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[https://proteopedia.org/fgij/fg.htm?mol=1bqc FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=1bqc OCA], [https://pdbe.org/1bqc PDBe], [https://www.rcsb.org/pdb/explore.do?structureId=1bqc RCSB], [https://www.ebi.ac.uk/pdbsum/1bqc PDBsum], [https://prosat.h-its.org/prosat/prosatexe?pdbcode=1bqc ProSAT]</span></td></tr> |
| </table> | | </table> |
| + | == Function == |
| + | [https://www.uniprot.org/uniprot/Q9ZF13_THEFU Q9ZF13_THEFU] |
| == Evolutionary Conservation == | | == Evolutionary Conservation == |
| [[Image:Consurf_key_small.gif|200px|right]] | | [[Image:Consurf_key_small.gif|200px|right]] |
Line 12: |
Line 14: |
| <jmolCheckbox> | | <jmolCheckbox> |
| <scriptWhenChecked>; select protein; define ~consurf_to_do selected; consurf_initial_scene = true; script "/wiki/ConSurf/bq/1bqc_consurf.spt"</scriptWhenChecked> | | <scriptWhenChecked>; select protein; define ~consurf_to_do selected; consurf_initial_scene = true; script "/wiki/ConSurf/bq/1bqc_consurf.spt"</scriptWhenChecked> |
- | <scriptWhenUnchecked>script /wiki/extensions/Proteopedia/spt/initialview01.spt</scriptWhenUnchecked> | + | <scriptWhenUnchecked>script /wiki/extensions/Proteopedia/spt/initialview03.spt</scriptWhenUnchecked> |
| <text>to colour the structure by Evolutionary Conservation</text> | | <text>to colour the structure by Evolutionary Conservation</text> |
| </jmolCheckbox> | | </jmolCheckbox> |
Line 31: |
Line 33: |
| </StructureSection> | | </StructureSection> |
| [[Category: Large Structures]] | | [[Category: Large Structures]] |
- | [[Category: Mannan endo-1,4-beta-mannosidase]] | |
| [[Category: Thermobifida fusca]] | | [[Category: Thermobifida fusca]] |
- | [[Category: Gloor, S M]] | + | [[Category: Gloor SM]] |
- | [[Category: Hilge, M]] | + | [[Category: Hilge M]] |
- | [[Category: Piontek, K]] | + | [[Category: Piontek K]] |
- | [[Category: Family 5]]
| + | |
- | [[Category: Glycosyl hydrolase]]
| + | |
- | [[Category: Hydrolase]]
| + | |
- | [[Category: Mannanase]]
| + | |
- | [[Category: Thermomonospora fusca]]
| + | |
| Structural highlights
Function
Q9ZF13_THEFU
Evolutionary Conservation
Check, as determined by ConSurfDB. You may read the explanation of the method and the full data available from ConSurf.
Publication Abstract from PubMed
Background:. beta-Mannanases hydrolyse the O-glycosidic bonds in mannan, a hemicellulose constituent of plants. These enzymes have potential use in pulp and paper production and are of significant biotechnological interest. Thermostable beta-mannanases would be particularly useful due to their high temperature optimum and broad pH tolerance. The thermophilic actinomycete Thermomonospora fusca secretes at least one beta-mannanase (molecular mass 38 kDa) with a temperature optimum of 80 degreesC. No three-dimensional structure of a mannan-degrading enzyme has been reported until now. Results:. The crystal structure of the thermostable beta-mannanase from T. fusca has been determined by the multiple isomorphous replacement method and refined to 1.5 A resolution. In addition to the native enzyme, the structures of the mannotriose- and mannohexaose-bound forms of the enzyme have been determined to resolutions of 1.9 A and 1.6 A, respectively. Conclusions:. Analysis of the -1 subsite of T. fusca mannanase reveals neither a favourable interaction towards the axial HO-C(2) nor a discrimination against the equatorial hydroxyl group of gluco-configurated substrates. We propose that selectivity arises from two possible mechanisms: a hydrophobic interaction of the substrate with Val263, conserved in family 5 bacterial mannanases, which discriminates between the different conformations of the hydroxymethyl group in native mannan and cellulose; and/or a specific interaction between Asp259 and the axial hydroxyl group at the C(2) of the substrate in the -2 subsite. Compared with the catalytic clefts of family 5 cellulases, the groove of T. fusca mannanase has a strongly reduced number of aromatic residues providing platforms for stacking with the substrate. This deletion of every second platform is in good agreement with the orientation of the axial hydroxyl groups in mannan.
High-resolution native and complex structures of thermostable beta-mannanase from Thermomonospora fusca - substrate specificity in glycosyl hydrolase family 5.,Hilge M, Gloor SM, Rypniewski W, Sauer O, Heightman TD, Zimmermann W, Winterhalter K, Piontek K Structure. 1998 Nov 15;6(11):1433-44. PMID:9817845[1]
From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.
References
- ↑ Hilge M, Gloor SM, Rypniewski W, Sauer O, Heightman TD, Zimmermann W, Winterhalter K, Piontek K. High-resolution native and complex structures of thermostable beta-mannanase from Thermomonospora fusca - substrate specificity in glycosyl hydrolase family 5. Structure. 1998 Nov 15;6(11):1433-44. PMID:9817845
|