|
|
(2 intermediate revisions not shown.) |
Line 1: |
Line 1: |
| | | |
| ==BACKBONE FOLD OF NODF== | | ==BACKBONE FOLD OF NODF== |
- | <StructureSection load='1fh1' size='340' side='right'caption='[[1fh1]], [[NMR_Ensembles_of_Models | 1 NMR models]]' scene=''> | + | <StructureSection load='1fh1' size='340' side='right'caption='[[1fh1]]' scene=''> |
| == Structural highlights == | | == Structural highlights == |
- | <table><tr><td colspan='2'>[[1fh1]] is a 1 chain structure with sequence from [http://en.wikipedia.org/wiki/"bacillus_francki"_matzuschita_1902 "bacillus francki" matzuschita 1902]. Full experimental information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=1FH1 OCA]. For a <b>guided tour on the structure components</b> use [http://oca.weizmann.ac.il/oca-docs/fgij/fg.htm?mol=1FH1 FirstGlance]. <br> | + | <table><tr><td colspan='2'>[[1fh1]] is a 1 chain structure with sequence from [https://en.wikipedia.org/wiki/Rhizobium_leguminosarum Rhizobium leguminosarum]. Full experimental information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=1FH1 OCA]. For a <b>guided tour on the structure components</b> use [https://proteopedia.org/fgij/fg.htm?mol=1FH1 FirstGlance]. <br> |
- | </td></tr><tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[http://oca.weizmann.ac.il/oca-docs/fgij/fg.htm?mol=1fh1 FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=1fh1 OCA], [http://pdbe.org/1fh1 PDBe], [http://www.rcsb.org/pdb/explore.do?structureId=1fh1 RCSB], [http://www.ebi.ac.uk/pdbsum/1fh1 PDBsum], [http://prosat.h-its.org/prosat/prosatexe?pdbcode=1fh1 ProSAT]</span></td></tr> | + | </td></tr><tr id='method'><td class="sblockLbl"><b>[[Empirical_models|Method:]]</b></td><td class="sblockDat" id="methodDat">Solution NMR</td></tr> |
| + | <tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[https://proteopedia.org/fgij/fg.htm?mol=1fh1 FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=1fh1 OCA], [https://pdbe.org/1fh1 PDBe], [https://www.rcsb.org/pdb/explore.do?structureId=1fh1 RCSB], [https://www.ebi.ac.uk/pdbsum/1fh1 PDBsum], [https://prosat.h-its.org/prosat/prosatexe?pdbcode=1fh1 ProSAT]</span></td></tr> |
| </table> | | </table> |
| == Function == | | == Function == |
- | [[http://www.uniprot.org/uniprot/NODF_RHILV NODF_RHILV]] Proposed to synthesize nod factor fatty acyl chain. Involved in trans-2,trans-4,trans-6,cis-11-octadecatetraenoic acid biosynthesis. | + | [https://www.uniprot.org/uniprot/NODF_RHILV NODF_RHILV] Proposed to synthesize nod factor fatty acyl chain. Involved in trans-2,trans-4,trans-6,cis-11-octadecatetraenoic acid biosynthesis. |
| == Evolutionary Conservation == | | == Evolutionary Conservation == |
| [[Image:Consurf_key_small.gif|200px|right]] | | [[Image:Consurf_key_small.gif|200px|right]] |
Line 34: |
Line 35: |
| __TOC__ | | __TOC__ |
| </StructureSection> | | </StructureSection> |
- | [[Category: Bacillus francki matzuschita 1902]] | |
| [[Category: Large Structures]] | | [[Category: Large Structures]] |
- | [[Category: Al-Hashimi, H M]] | + | [[Category: Rhizobium leguminosarum]] |
- | [[Category: Fowler, C A]] | + | [[Category: Al-Hashimi HM]] |
- | [[Category: Prestegard, J H]] | + | [[Category: Fowler CA]] |
- | [[Category: Tian, F]] | + | [[Category: Prestegard JH]] |
- | [[Category: Lipid binding protein]]
| + | [[Category: Tian F]] |
- | [[Category: Protein backbone fold]]
| + | |
- | [[Category: Root nodulation factor]]
| + | |
| Structural highlights
Function
NODF_RHILV Proposed to synthesize nod factor fatty acyl chain. Involved in trans-2,trans-4,trans-6,cis-11-octadecatetraenoic acid biosynthesis.
Evolutionary Conservation
Check, as determined by ConSurfDB. You may read the explanation of the method and the full data available from ConSurf.
Publication Abstract from PubMed
Over the next few years, various genome projects will sequence many new genes and yield many new gene products. Many of these products will have no known function and little, if any, sequence homology to existing proteins. There is reason to believe that a rapid determination of a protein fold, even at low resolution, can aid in the identification of function and expedite the determination of structure at higher resolution. Recently devised NMR methods of measuring residual dipolar couplings provide one route to the determination of a fold. They do this by allowing the alignment of previously identified secondary structural elements with respect to each other. When combined with constraints involving loops connecting elements or other short-range experimental distance information, a fold is produced. We illustrate this approach to protein fold determination on (15)N-labeled Eschericia coli acyl carrier protein using a limited set of (15)N-(1)H and (1)H-(1)H dipolar couplings. We also illustrate an approach using a more extended set of heteronuclear couplings on a related protein, (13)C, (15)N-labeled NodF protein from Rhizobium leguminosarum.
Rapid determination of protein folds using residual dipolar couplings.,Fowler CA, Tian F, Al-Hashimi HM, Prestegard JH J Mol Biol. 2000 Dec 1;304(3):447-60. PMID:11090286[1]
From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.
See Also
References
- ↑ Fowler CA, Tian F, Al-Hashimi HM, Prestegard JH. Rapid determination of protein folds using residual dipolar couplings. J Mol Biol. 2000 Dec 1;304(3):447-60. PMID:11090286 doi:10.1006/jmbi.2000.4199
|