|
|
(One intermediate revision not shown.) |
Line 3: |
Line 3: |
| <StructureSection load='3wml' size='340' side='right'caption='[[3wml]], [[Resolution|resolution]] 1.99Å' scene=''> | | <StructureSection load='3wml' size='340' side='right'caption='[[3wml]], [[Resolution|resolution]] 1.99Å' scene=''> |
| == Structural highlights == | | == Structural highlights == |
- | <table><tr><td colspan='2'>[[3wml]] is a 1 chain structure with sequence from [http://en.wikipedia.org/wiki/"achromobacter_radiobacter"_(beijerinck_and_van_delden_1902)_bergey_et_al._1934 "achromobacter radiobacter" (beijerinck and van delden 1902) bergey et al. 1934]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=3WML OCA]. For a <b>guided tour on the structure components</b> use [http://oca.weizmann.ac.il/oca-docs/fgij/fg.htm?mol=3WML FirstGlance]. <br> | + | <table><tr><td colspan='2'>[[3wml]] is a 1 chain structure with sequence from [https://en.wikipedia.org/wiki/Agrobacterium_tumefaciens Agrobacterium tumefaciens]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=3WML OCA]. For a <b>guided tour on the structure components</b> use [https://proteopedia.org/fgij/fg.htm?mol=3WML FirstGlance]. <br> |
- | </td></tr><tr id='ligand'><td class="sblockLbl"><b>[[Ligand|Ligands:]]</b></td><td class="sblockDat"><scene name='pdbligand=CO:COBALT+(II)+ION'>CO</scene>, <scene name='pdbligand=EDO:1,2-ETHANEDIOL'>EDO</scene>, <scene name='pdbligand=FE2:FE+(II)+ION'>FE2</scene></td></tr> | + | </td></tr><tr id='method'><td class="sblockLbl"><b>[[Empirical_models|Method:]]</b></td><td class="sblockDat" id="methodDat">X-ray diffraction, [[Resolution|Resolution]] 1.99Å</td></tr> |
- | <tr id='NonStdRes'><td class="sblockLbl"><b>[[Non-Standard_Residue|NonStd Res:]]</b></td><td class="sblockDat"><scene name='pdbligand=KCX:LYSINE+NZ-CARBOXYLIC+ACID'>KCX</scene></td></tr> | + | <tr id='ligand'><td class="sblockLbl"><b>[[Ligand|Ligands:]]</b></td><td class="sblockDat" id="ligandDat"><scene name='pdbligand=CO:COBALT+(II)+ION'>CO</scene>, <scene name='pdbligand=EDO:1,2-ETHANEDIOL'>EDO</scene>, <scene name='pdbligand=FE2:FE+(II)+ION'>FE2</scene>, <scene name='pdbligand=KCX:LYSINE+NZ-CARBOXYLIC+ACID'>KCX</scene></td></tr> |
- | <tr id='related'><td class="sblockLbl"><b>[[Related_structure|Related:]]</b></td><td class="sblockDat">[[4np7|4np7]]</td></tr>
| + | <tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[https://proteopedia.org/fgij/fg.htm?mol=3wml FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=3wml OCA], [https://pdbe.org/3wml PDBe], [https://www.rcsb.org/pdb/explore.do?structureId=3wml RCSB], [https://www.ebi.ac.uk/pdbsum/3wml PDBsum], [https://prosat.h-its.org/prosat/prosatexe?pdbcode=3wml ProSAT]</span></td></tr> |
- | <tr id='gene'><td class="sblockLbl"><b>[[Gene|Gene:]]</b></td><td class="sblockDat">opdA ([http://www.ncbi.nlm.nih.gov/Taxonomy/Browser/wwwtax.cgi?mode=Info&srchmode=5&id=358 "Achromobacter radiobacter" (Beijerinck and van Delden 1902) Bergey et al. 1934])</td></tr>
| + | |
- | <tr id='activity'><td class="sblockLbl"><b>Activity:</b></td><td class="sblockDat"><span class='plainlinks'>[http://en.wikipedia.org/wiki/Aryldialkylphosphatase Aryldialkylphosphatase], with EC number [http://www.brenda-enzymes.info/php/result_flat.php4?ecno=3.1.8.1 3.1.8.1] </span></td></tr> | + | |
- | <tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[http://oca.weizmann.ac.il/oca-docs/fgij/fg.htm?mol=3wml FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=3wml OCA], [http://pdbe.org/3wml PDBe], [http://www.rcsb.org/pdb/explore.do?structureId=3wml RCSB], [http://www.ebi.ac.uk/pdbsum/3wml PDBsum], [http://prosat.h-its.org/prosat/prosatexe?pdbcode=3wml ProSAT]</span></td></tr> | + | |
| </table> | | </table> |
| + | == Function == |
| + | [https://www.uniprot.org/uniprot/Q93LD7_RHIRD Q93LD7_RHIRD] |
| <div style="background-color:#fffaf0;"> | | <div style="background-color:#fffaf0;"> |
| == Publication Abstract from PubMed == | | == Publication Abstract from PubMed == |
Line 22: |
Line 21: |
| | | |
| ==See Also== | | ==See Also== |
- | *[[Phosphotriesterase|Phosphotriesterase]] | + | *[[Phosphotriesterase 3D structures|Phosphotriesterase 3D structures]] |
| == References == | | == References == |
| <references/> | | <references/> |
| __TOC__ | | __TOC__ |
| </StructureSection> | | </StructureSection> |
- | [[Category: Aryldialkylphosphatase]] | + | [[Category: Agrobacterium tumefaciens]] |
| [[Category: Large Structures]] | | [[Category: Large Structures]] |
- | [[Category: Carr, P D]] | + | [[Category: Carr PD]] |
- | [[Category: Jackson, C J]] | + | [[Category: Jackson CJ]] |
- | [[Category: Sugrue, E]] | + | [[Category: Sugrue E]] |
- | [[Category: Hydrolase]]
| + | |
- | [[Category: Phosphotriesterase]]
| + | |
| Structural highlights
Function
Q93LD7_RHIRD
Publication Abstract from PubMed
Phosphotriesterases (PTEs) have been isolated from a range of bacterial species, including Agrobcaterium radiobacter (PTEAr), and are efficient enzymes with broad substrate ranges. The turnover rate of PTEAr for the common organophosphorous insecticide malathion is lower than expected based on its physical properties; principally the pka of its leaving group. In this study, we rationalise the turnover rate of PTEAr for malathion using computational docking of the substrate into a high resolution crystal structure of the enzyme, suggesting that malathion is too large for the PTEAr binding pocket. Protein engineering through combinatorial active site saturation testing (CASTing) was then used to increase the rate of malathion turnover. Variants from a CASTing library in which Ser308 and Tyr309 were mutated yielded variants with increased activity towards malathion. The most active PTEAr variant carried Ser308Leu and Tyr309Ala substitutions, which resulted in a ca. 5000-fold increase in kcat/KM for malathion. X-ray crystal structures for the PTEAr Ser308Leu\Tyr309Ala variant demonstrate that the access to the binding pocket was enhanced by the replacement of the bulky Tyr309 residue with the smaller alanine residue.
A 5000-fold increase in the specificity of a bacterial phosphotriesterase for malathion through combinatorial active site mutagenesis.,Naqvi T, Warden AC, French N, Sugrue E, Carr PD, Jackson CJ, Scott C PLoS One. 2014 Apr 10;9(4):e94177. doi: 10.1371/journal.pone.0094177. eCollection, 2014. PMID:24721933[1]
From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.
See Also
References
- ↑ Naqvi T, Warden AC, French N, Sugrue E, Carr PD, Jackson CJ, Scott C. A 5000-fold increase in the specificity of a bacterial phosphotriesterase for malathion through combinatorial active site mutagenesis. PLoS One. 2014 Apr 10;9(4):e94177. doi: 10.1371/journal.pone.0094177. eCollection, 2014. PMID:24721933 doi:http://dx.doi.org/10.1371/journal.pone.0094177
|