|
|
| (3 intermediate revisions not shown.) |
| Line 1: |
Line 1: |
| | | | |
| | ==GluA2 bound to antagonist ZK and GSG1L in digitonin, state 2== | | ==GluA2 bound to antagonist ZK and GSG1L in digitonin, state 2== |
| - | <StructureSection load='5wel' size='340' side='right'caption='[[5wel]], [[Resolution|resolution]] 4.40Å' scene=''> | + | <SX load='5wel' size='340' side='right' viewer='molstar' caption='[[5wel]], [[Resolution|resolution]] 4.40Å' scene=''> |
| | == Structural highlights == | | == Structural highlights == |
| - | <table><tr><td colspan='2'>[[5wel]] is a 4 chain structure with sequence from [http://en.wikipedia.org/wiki/Lk3_transgenic_mice Lk3 transgenic mice]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=5WEL OCA]. For a <b>guided tour on the structure components</b> use [http://oca.weizmann.ac.il/oca-docs/fgij/fg.htm?mol=5WEL FirstGlance]. <br> | + | <table><tr><td colspan='2'>[[5wel]] is a 4 chain structure with sequence from [https://en.wikipedia.org/wiki/Mus_musculus Mus musculus] and [https://en.wikipedia.org/wiki/Rattus_norvegicus Rattus norvegicus]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=5WEL OCA]. For a <b>guided tour on the structure components</b> use [https://proteopedia.org/fgij/fg.htm?mol=5WEL FirstGlance]. <br> |
| - | </td></tr><tr id='ligand'><td class="sblockLbl"><b>[[Ligand|Ligands:]]</b></td><td class="sblockDat"><scene name='pdbligand=AJP:Digitonin'>AJP</scene>, <scene name='pdbligand=ZK1:{[7-MORPHOLIN-4-YL-2,3-DIOXO-6-(TRIFLUOROMETHYL)-3,4-DIHYDROQUINOXALIN-1(2H)-YL]METHYL}PHOSPHONIC+ACID'>ZK1</scene></td></tr> | + | </td></tr><tr id='method'><td class="sblockLbl"><b>[[Empirical_models|Method:]]</b></td><td class="sblockDat" id="methodDat">Electron Microscopy, [[Resolution|Resolution]] 4.4Å</td></tr> |
| - | <tr id='gene'><td class="sblockLbl"><b>[[Gene|Gene:]]</b></td><td class="sblockDat">Gsg1l ([http://www.ncbi.nlm.nih.gov/Taxonomy/Browser/wwwtax.cgi?mode=Info&srchmode=5&id=10090 LK3 transgenic mice])</td></tr>
| + | <tr id='ligand'><td class="sblockLbl"><b>[[Ligand|Ligands:]]</b></td><td class="sblockDat" id="ligandDat"><scene name='pdbligand=AJP:(2~{R},3~{S},4~{S},5~{R},6~{S})-2-(hydroxymethyl)-6-[(2~{R},3~{S},4~{S},5~{R},6~{S})-2-(hydroxymethyl)-6-[(2~{S},3~{R},4~{S},5~{R},6~{R})-6-(hydroxymethyl)-2-[(2~{R},3~{R},4~{R},5~{R},6~{R})-2-(hydroxymethyl)-4,5-bis(oxidanyl)-6-[(1~{R},2~{S},3~{S},4~{R},5~{R},6~{R},7~{S},8~{R},9~{S},12~{S},13~{S},15~{R},16~{R},18~{S})-5,7,9,13-tetramethyl-3,15-bis(oxidanyl)spiro[5-oxapentacyclo[10.8.0.0^{2,9}.0^{4,8}.0^{13,18}]icosane-6,2-oxane]-16-yl]oxy-oxan-3-yl]oxy-5-oxidanyl-4-[(2~{S},3~{R},4~{S},5~{R})-3,4,5-tris(oxidanyl)oxan-2-yl]oxy-oxan-3-yl]oxy-3,5-bis(oxidanyl)oxan-4-yl]oxy-oxane-3,4,5-triol'>AJP</scene>, <scene name='pdbligand=ZK1:{[7-MORPHOLIN-4-YL-2,3-DIOXO-6-(TRIFLUOROMETHYL)-3,4-DIHYDROQUINOXALIN-1(2H)-YL]METHYL}PHOSPHONIC+ACID'>ZK1</scene></td></tr> |
| - | <tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[http://oca.weizmann.ac.il/oca-docs/fgij/fg.htm?mol=5wel FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=5wel OCA], [http://pdbe.org/5wel PDBe], [http://www.rcsb.org/pdb/explore.do?structureId=5wel RCSB], [http://www.ebi.ac.uk/pdbsum/5wel PDBsum], [http://prosat.h-its.org/prosat/prosatexe?pdbcode=5wel ProSAT]</span></td></tr> | + | <tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[https://proteopedia.org/fgij/fg.htm?mol=5wel FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=5wel OCA], [https://pdbe.org/5wel PDBe], [https://www.rcsb.org/pdb/explore.do?structureId=5wel RCSB], [https://www.ebi.ac.uk/pdbsum/5wel PDBsum], [https://prosat.h-its.org/prosat/prosatexe?pdbcode=5wel ProSAT]</span></td></tr> |
| | </table> | | </table> |
| | == Function == | | == Function == |
| - | [[http://www.uniprot.org/uniprot/GRIA2_RAT GRIA2_RAT]] Receptor for glutamate that functions as ligand-gated ion channel in the central nervous system and plays an important role in excitatory synaptic transmission. L-glutamate acts as an excitatory neurotransmitter at many synapses in the central nervous system. Binding of the excitatory neurotransmitter L-glutamate induces a conformation change, leading to the opening of the cation channel, and thereby converts the chemical signal to an electrical impulse. The receptor then desensitizes rapidly and enters a transient inactive state, characterized by the presence of bound agonist. In the presence of CACNG4 or CACNG7 or CACNG8, shows resensitization which is characterized by a delayed accumulation of current flux upon continued application of glutamate.<ref>PMID:9351977</ref> <ref>PMID:19265014</ref> <ref>PMID:21172611</ref> <ref>PMID:12501192</ref> <ref>PMID:12015593</ref> <ref>PMID:12872125</ref> <ref>PMID:12730367</ref> <ref>PMID:16192394</ref> <ref>PMID:15591246</ref> <ref>PMID:17018279</ref> <ref>PMID:16483599</ref> <ref>PMID:19946266</ref> <ref>PMID:21317873</ref> <ref>PMID:21846932</ref> | + | [https://www.uniprot.org/uniprot/GRIA2_RAT GRIA2_RAT] Receptor for glutamate that functions as ligand-gated ion channel in the central nervous system and plays an important role in excitatory synaptic transmission. L-glutamate acts as an excitatory neurotransmitter at many synapses in the central nervous system. Binding of the excitatory neurotransmitter L-glutamate induces a conformation change, leading to the opening of the cation channel, and thereby converts the chemical signal to an electrical impulse. The receptor then desensitizes rapidly and enters a transient inactive state, characterized by the presence of bound agonist. In the presence of CACNG4 or CACNG7 or CACNG8, shows resensitization which is characterized by a delayed accumulation of current flux upon continued application of glutamate.<ref>PMID:9351977</ref> <ref>PMID:19265014</ref> <ref>PMID:21172611</ref> <ref>PMID:12501192</ref> <ref>PMID:12015593</ref> <ref>PMID:12872125</ref> <ref>PMID:12730367</ref> <ref>PMID:16192394</ref> <ref>PMID:15591246</ref> <ref>PMID:17018279</ref> <ref>PMID:16483599</ref> <ref>PMID:19946266</ref> <ref>PMID:21317873</ref> <ref>PMID:21846932</ref> [https://www.uniprot.org/uniprot/GSG1L_MOUSE GSG1L_MOUSE] As a component of the inner core of AMPAR complexes, modifies AMPA receptor (AMPAR) gating. |
| | <div style="background-color:#fffaf0;"> | | <div style="background-color:#fffaf0;"> |
| | == Publication Abstract from PubMed == | | == Publication Abstract from PubMed == |
| Line 22: |
Line 22: |
| | <references/> | | <references/> |
| | __TOC__ | | __TOC__ |
| - | </StructureSection> | + | </SX> |
| | [[Category: Large Structures]] | | [[Category: Large Structures]] |
| - | [[Category: Lk3 transgenic mice]] | + | [[Category: Mus musculus]] |
| - | [[Category: Frank, J]] | + | [[Category: Rattus norvegicus]] |
| - | [[Category: Grassucci, R A]] | + | [[Category: Frank J]] |
| - | [[Category: Sobolevsky, A I]] | + | [[Category: Grassucci RA]] |
| - | [[Category: Twomey, E C]] | + | [[Category: Sobolevsky AI]] |
| - | [[Category: Yelshanskaya, M V]] | + | [[Category: Twomey EC]] |
| - | [[Category: Ion channel]] | + | [[Category: Yelshanskaya MV]] |
| - | [[Category: Transport protein]]
| + | |
| Structural highlights
Function
GRIA2_RAT Receptor for glutamate that functions as ligand-gated ion channel in the central nervous system and plays an important role in excitatory synaptic transmission. L-glutamate acts as an excitatory neurotransmitter at many synapses in the central nervous system. Binding of the excitatory neurotransmitter L-glutamate induces a conformation change, leading to the opening of the cation channel, and thereby converts the chemical signal to an electrical impulse. The receptor then desensitizes rapidly and enters a transient inactive state, characterized by the presence of bound agonist. In the presence of CACNG4 or CACNG7 or CACNG8, shows resensitization which is characterized by a delayed accumulation of current flux upon continued application of glutamate.[1] [2] [3] [4] [5] [6] [7] [8] [9] [10] [11] [12] [13] [14] GSG1L_MOUSE As a component of the inner core of AMPAR complexes, modifies AMPA receptor (AMPAR) gating.
Publication Abstract from PubMed
AMPA-subtype ionotropic glutamate receptors mediate fast excitatory neurotransmission throughout the central nervous system. Gated by the neurotransmitter glutamate, AMPA receptors are critical for synaptic strength and dysregulation of AMPA receptor-mediated signalling is linked to numerous neurological diseases. Here, we use cryo-electron microscopy to solve the structures of AMPA receptor-auxiliary subunit complexes in the apo, antagonist and agonist-bound states and elucidate the iris-like mechanism of ion channel opening. The ion channel selectivity filter is formed by the extended portions of the re-entrant M2 loops, while the helical portions of M2 contribute to extensive hydrophobic interfaces between AMPA receptor subunits in the ion channel. We show how the permeation pathway changes upon channel opening and identify conformational changes throughout the entire AMPA receptor that accompany activation and desensitization. Our findings provide a framework for understanding gating across the family of ionotropic glutamate receptors and the role of AMPA receptors in excitatory neurotransmission.
Channel opening and gating mechanism in AMPA-subtype glutamate receptors.,Twomey EC, Yelshanskaya MV, Grassucci RA, Frank J, Sobolevsky AI Nature. 2017 Jul 24. doi: 10.1038/nature23479. PMID:28737760[15]
From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.
References
- ↑ Everts I, Villmann C, Hollmann M. N-Glycosylation is not a prerequisite for glutamate receptor function but Is essential for lectin modulation. Mol Pharmacol. 1997 Nov;52(5):861-73. PMID:9351977
- ↑ Schwenk J, Harmel N, Zolles G, Bildl W, Kulik A, Heimrich B, Chisaka O, Jonas P, Schulte U, Fakler B, Klocker N. Functional proteomics identify cornichon proteins as auxiliary subunits of AMPA receptors. Science. 2009 Mar 6;323(5919):1313-9. doi: 10.1126/science.1167852. PMID:19265014 doi:10.1126/science.1167852
- ↑ Kato AS, Gill MB, Ho MT, Yu H, Tu Y, Siuda ER, Wang H, Qian YW, Nisenbaum ES, Tomita S, Bredt DS. Hippocampal AMPA receptor gating controlled by both TARP and cornichon proteins. Neuron. 2010 Dec 22;68(6):1082-96. doi: 10.1016/j.neuron.2010.11.026. PMID:21172611 doi:10.1016/j.neuron.2010.11.026
- ↑ Jin R, Horning M, Mayer ML, Gouaux E. Mechanism of activation and selectivity in a ligand-gated ion channel: structural and functional studies of GluR2 and quisqualate. Biochemistry. 2002 Dec 31;41(52):15635-43. PMID:12501192
- ↑ Sun Y, Olson R, Horning M, Armstrong N, Mayer M, Gouaux E. Mechanism of glutamate receptor desensitization. Nature. 2002 May 16;417(6886):245-53. PMID:12015593 doi:10.1038/417245a
- ↑ Jin R, Banke TG, Mayer ML, Traynelis SF, Gouaux E. Structural basis for partial agonist action at ionotropic glutamate receptors. Nat Neurosci. 2003 Aug;6(8):803-10. PMID:12872125 doi:10.1038/nn1091
- ↑ Armstrong N, Mayer M, Gouaux E. Tuning activation of the AMPA-sensitive GluR2 ion channel by genetic adjustment of agonist-induced conformational changes. Proc Natl Acad Sci U S A. 2003 May 13;100(10):5736-41. Epub 2003 May 2. PMID:12730367 doi:http://dx.doi.org/10.1073/pnas.1037393100
- ↑ Jin R, Clark S, Weeks AM, Dudman JT, Gouaux E, Partin KM. Mechanism of positive allosteric modulators acting on AMPA receptors. J Neurosci. 2005 Sep 28;25(39):9027-36. PMID:16192394 doi:25/39/9027
- ↑ Frandsen A, Pickering DS, Vestergaard B, Kasper C, Nielsen BB, Greenwood JR, Campiani G, Fattorusso C, Gajhede M, Schousboe A, Kastrup JS. Tyr702 is an important determinant of agonist binding and domain closure of the ligand-binding core of GluR2. Mol Pharmacol. 2005 Mar;67(3):703-13. Epub 2004 Dec 9. PMID:15591246 doi:10.1124/mol.104.002931
- ↑ Armstrong N, Jasti J, Beich-Frandsen M, Gouaux E. Measurement of conformational changes accompanying desensitization in an ionotropic glutamate receptor. Cell. 2006 Oct 6;127(1):85-97. PMID:17018279 doi:10.1016/j.cell.2006.08.037
- ↑ Kasper C, Pickering DS, Mirza O, Olsen L, Kristensen AS, Greenwood JR, Liljefors T, Schousboe A, Watjen F, Gajhede M, Sigurskjold BW, Kastrup JS. The structure of a mixed GluR2 ligand-binding core dimer in complex with (S)-glutamate and the antagonist (S)-NS1209. J Mol Biol. 2006 Apr 7;357(4):1184-201. Epub 2006 Jan 31. PMID:16483599 doi:10.1016/j.jmb.2006.01.024
- ↑ Sobolevsky AI, Rosconi MP, Gouaux E. X-ray structure, symmetry and mechanism of an AMPA-subtype glutamate receptor. Nature. 2009 Dec 10;462(7274):745-56. Epub . PMID:19946266 doi:10.1038/nature08624
- ↑ Rossmann M, Sukumaran M, Penn AC, Veprintsev DB, Babu MM, Greger IH. Subunit-selective N-terminal domain associations organize the formation of AMPA receptor heteromers. EMBO J. 2011 Mar 2;30(5):959-71. Epub 2011 Feb 11. PMID:21317873 doi:10.1038/emboj.2011.16
- ↑ Ahmed AH, Wang S, Chuang HH, Oswald RE. Mechanism of AMPA receptor activation by partial agonists: disulfide trapping of closed lobe conformations. J Biol Chem. 2011 Aug 16. PMID:21846932 doi:10.1074/jbc.M111.269001
- ↑ Twomey EC, Yelshanskaya MV, Grassucci RA, Frank J, Sobolevsky AI. Channel opening and gating mechanism in AMPA-subtype glutamate receptors. Nature. 2017 Jul 24. doi: 10.1038/nature23479. PMID:28737760 doi:http://dx.doi.org/10.1038/nature23479
|