|
|
Line 3: |
Line 3: |
| <StructureSection load='6csm' size='340' side='right'caption='[[6csm]], [[Resolution|resolution]] 2.90Å' scene=''> | | <StructureSection load='6csm' size='340' side='right'caption='[[6csm]], [[Resolution|resolution]] 2.90Å' scene=''> |
| == Structural highlights == | | == Structural highlights == |
- | <table><tr><td colspan='2'>[[6csm]] is a 4 chain structure with sequence from [http://en.wikipedia.org/wiki/Cryptophyte Cryptophyte]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=6CSM OCA]. For a <b>guided tour on the structure components</b> use [http://oca.weizmann.ac.il/oca-docs/fgij/fg.htm?mol=6CSM FirstGlance]. <br> | + | <table><tr><td colspan='2'>[[6csm]] is a 4 chain structure with sequence from [https://en.wikipedia.org/wiki/Guillardia_theta_CCMP2712 Guillardia theta CCMP2712]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=6CSM OCA]. For a <b>guided tour on the structure components</b> use [https://proteopedia.org/fgij/fg.htm?mol=6CSM FirstGlance]. <br> |
- | </td></tr><tr id='ligand'><td class="sblockLbl"><b>[[Ligand|Ligands:]]</b></td><td class="sblockDat"><scene name='pdbligand=OLA:OLEIC+ACID'>OLA</scene>, <scene name='pdbligand=RET:RETINAL'>RET</scene></td></tr> | + | </td></tr><tr id='method'><td class="sblockLbl"><b>[[Empirical_models|Method:]]</b></td><td class="sblockDat" id="methodDat">X-ray diffraction, [[Resolution|Resolution]] 2.9Å</td></tr> |
- | <tr id='gene'><td class="sblockLbl"><b>[[Gene|Gene:]]</b></td><td class="sblockDat">GUITHDRAFT_111593 ([http://www.ncbi.nlm.nih.gov/Taxonomy/Browser/wwwtax.cgi?mode=Info&srchmode=5&id=905079 Cryptophyte])</td></tr> | + | <tr id='ligand'><td class="sblockLbl"><b>[[Ligand|Ligands:]]</b></td><td class="sblockDat" id="ligandDat"><scene name='pdbligand=OLA:OLEIC+ACID'>OLA</scene>, <scene name='pdbligand=RET:RETINAL'>RET</scene></td></tr> |
- | <tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[http://oca.weizmann.ac.il/oca-docs/fgij/fg.htm?mol=6csm FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=6csm OCA], [http://pdbe.org/6csm PDBe], [http://www.rcsb.org/pdb/explore.do?structureId=6csm RCSB], [http://www.ebi.ac.uk/pdbsum/6csm PDBsum], [http://prosat.h-its.org/prosat/prosatexe?pdbcode=6csm ProSAT]</span></td></tr> | + | <tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[https://proteopedia.org/fgij/fg.htm?mol=6csm FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=6csm OCA], [https://pdbe.org/6csm PDBe], [https://www.rcsb.org/pdb/explore.do?structureId=6csm RCSB], [https://www.ebi.ac.uk/pdbsum/6csm PDBsum], [https://prosat.h-its.org/prosat/prosatexe?pdbcode=6csm ProSAT]</span></td></tr> |
| </table> | | </table> |
| + | == Function == |
| + | [https://www.uniprot.org/uniprot/L1J207_GUITC L1J207_GUITC] |
| <div style="background-color:#fffaf0;"> | | <div style="background-color:#fffaf0;"> |
| == Publication Abstract from PubMed == | | == Publication Abstract from PubMed == |
Line 21: |
Line 23: |
| __TOC__ | | __TOC__ |
| </StructureSection> | | </StructureSection> |
- | [[Category: Cryptophyte]] | + | [[Category: Guillardia theta CCMP2712]] |
| [[Category: Large Structures]] | | [[Category: Large Structures]] |
- | [[Category: Deisseroth, K]] | + | [[Category: Deisseroth K]] |
- | [[Category: Kato, H E]] | + | [[Category: Kato HE]] |
- | [[Category: Kim, Y]] | + | [[Category: Kim Y]] |
- | [[Category: Kobilka, B K]] | + | [[Category: Kobilka BK]] |
- | [[Category: Yamashita, K]] | + | [[Category: Yamashita K]] |
- | [[Category: Anion channel]]
| + | |
- | [[Category: Channelrhodopsin]]
| + | |
- | [[Category: Membrane protein]]
| + | |
- | [[Category: Optogenetic]]
| + | |
- | [[Category: Rhodopsin]]
| + | |
| Structural highlights
Function
L1J207_GUITC
Publication Abstract from PubMed
Both designed and natural anion-conducting channelrhodopsins (dACRs and nACRs, respectively) have been widely applied in optogenetics (enabling selective inhibition of target-cell activity during animal behaviour studies), but each class exhibits performance limitations, underscoring trade-offs in channel structure-function relationships. Therefore, molecular and structural insights into dACRs and nACRs will be critical not only for understanding the fundamental mechanisms of these light-gated anion channels, but also to create next-generation optogenetic tools. Here we report crystal structures of the dACR iC++, along with spectroscopic, electrophysiological and computational analyses that provide unexpected insights into pH dependence, substrate recognition, channel gating and ion selectivity of both dACRs and nACRs. These results enabled us to create an anion-conducting channelrhodopsin integrating the key features of large photocurrent and fast kinetics alongside exclusive anion selectivity.
Structural mechanisms of selectivity and gating in anion channelrhodopsins.,Kato HE, Kim YS, Paggi JM, Evans KE, Allen WE, Richardson C, Inoue K, Ito S, Ramakrishnan C, Fenno LE, Yamashita K, Hilger D, Lee SY, Berndt A, Shen K, Kandori H, Dror RO, Kobilka BK, Deisseroth K Nature. 2018 Aug 29. pii: 10.1038/s41586-018-0504-5. doi:, 10.1038/s41586-018-0504-5. PMID:30158697[1]
From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.
References
- ↑ Kato HE, Kim YS, Paggi JM, Evans KE, Allen WE, Richardson C, Inoue K, Ito S, Ramakrishnan C, Fenno LE, Yamashita K, Hilger D, Lee SY, Berndt A, Shen K, Kandori H, Dror RO, Kobilka BK, Deisseroth K. Structural mechanisms of selectivity and gating in anion channelrhodopsins. Nature. 2018 Aug 29. pii: 10.1038/s41586-018-0504-5. doi:, 10.1038/s41586-018-0504-5. PMID:30158697 doi:http://dx.doi.org/10.1038/s41586-018-0504-5
|