|
|
Line 3: |
Line 3: |
| <StructureSection load='6nwc' size='340' side='right'caption='[[6nwc]], [[Resolution|resolution]] 2.35Å' scene=''> | | <StructureSection load='6nwc' size='340' side='right'caption='[[6nwc]], [[Resolution|resolution]] 2.35Å' scene=''> |
| == Structural highlights == | | == Structural highlights == |
- | <table><tr><td colspan='2'>[[6nwc]] is a 1 chain structure with sequence from [http://en.wikipedia.org/wiki/Arath Arath]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=6NWC OCA]. For a <b>guided tour on the structure components</b> use [http://oca.weizmann.ac.il/oca-docs/fgij/fg.htm?mol=6NWC FirstGlance]. <br> | + | <table><tr><td colspan='2'>[[6nwc]] is a 1 chain structure with sequence from [https://en.wikipedia.org/wiki/Arabidopsis_thaliana Arabidopsis thaliana]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=6NWC OCA]. For a <b>guided tour on the structure components</b> use [https://proteopedia.org/fgij/fg.htm?mol=6NWC FirstGlance]. <br> |
- | </td></tr><tr id='ligand'><td class="sblockLbl"><b>[[Ligand|Ligands:]]</b></td><td class="sblockDat"><scene name='pdbligand=L6P:1-{[(4-cyano-3-cyclopropylphenyl)acetyl]amino}cyclohexane-1-carboxylic+acid'>L6P</scene></td></tr> | + | </td></tr><tr id='method'><td class="sblockLbl"><b>[[Empirical_models|Method:]]</b></td><td class="sblockDat" id="methodDat">X-ray diffraction, [[Resolution|Resolution]] 2.35Å</td></tr> |
- | <tr id='gene'><td class="sblockLbl"><b>[[Gene|Gene:]]</b></td><td class="sblockDat">PYL10, RCAR4, At4g27920, T13J8.30 ([http://www.ncbi.nlm.nih.gov/Taxonomy/Browser/wwwtax.cgi?mode=Info&srchmode=5&id=3702 ARATH])</td></tr> | + | <tr id='ligand'><td class="sblockLbl"><b>[[Ligand|Ligands:]]</b></td><td class="sblockDat" id="ligandDat"><scene name='pdbligand=L6P:1-{[(4-cyano-3-cyclopropylphenyl)acetyl]amino}cyclohexane-1-carboxylic+acid'>L6P</scene></td></tr> |
- | <tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[http://oca.weizmann.ac.il/oca-docs/fgij/fg.htm?mol=6nwc FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=6nwc OCA], [http://pdbe.org/6nwc PDBe], [http://www.rcsb.org/pdb/explore.do?structureId=6nwc RCSB], [http://www.ebi.ac.uk/pdbsum/6nwc PDBsum], [http://prosat.h-its.org/prosat/prosatexe?pdbcode=6nwc ProSAT]</span></td></tr> | + | <tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[https://proteopedia.org/fgij/fg.htm?mol=6nwc FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=6nwc OCA], [https://pdbe.org/6nwc PDBe], [https://www.rcsb.org/pdb/explore.do?structureId=6nwc RCSB], [https://www.ebi.ac.uk/pdbsum/6nwc PDBsum], [https://prosat.h-its.org/prosat/prosatexe?pdbcode=6nwc ProSAT]</span></td></tr> |
| </table> | | </table> |
| == Function == | | == Function == |
- | [[http://www.uniprot.org/uniprot/PYL10_ARATH PYL10_ARATH]] Receptor for abscisic acid (ABA) required for ABA-mediated responses such as stomatal closure and germination inhibition. Inhibits the activity of group-A protein phosphatases type 2C (PP2Cs) when activated by ABA (By similarity). | + | [https://www.uniprot.org/uniprot/PYL10_ARATH PYL10_ARATH] Receptor for abscisic acid (ABA) required for ABA-mediated responses such as stomatal closure and germination inhibition. Inhibits the activity of group-A protein phosphatases type 2C (PP2Cs) when activated by ABA (By similarity). |
| <div style="background-color:#fffaf0;"> | | <div style="background-color:#fffaf0;"> |
| == Publication Abstract from PubMed == | | == Publication Abstract from PubMed == |
Line 19: |
Line 19: |
| </div> | | </div> |
| <div class="pdbe-citations 6nwc" style="background-color:#fffaf0;"></div> | | <div class="pdbe-citations 6nwc" style="background-color:#fffaf0;"></div> |
| + | |
| + | ==See Also== |
| + | *[[Abscisic acid receptor 3D structures|Abscisic acid receptor 3D structures]] |
| == References == | | == References == |
| <references/> | | <references/> |
| __TOC__ | | __TOC__ |
| </StructureSection> | | </StructureSection> |
- | [[Category: Arath]] | + | [[Category: Arabidopsis thaliana]] |
| [[Category: Large Structures]] | | [[Category: Large Structures]] |
- | [[Category: Cutler, S R]] | + | [[Category: Cutler SR]] |
- | [[Category: Jensen, D R]] | + | [[Category: Jensen DR]] |
- | [[Category: Peterson, F C]] | + | [[Category: Peterson FC]] |
- | [[Category: Vaidya, A]] | + | [[Category: Vaidya A]] |
- | [[Category: Volkman, B F]] | + | [[Category: Volkman BF]] |
- | [[Category: Hormone receptor]]
| + | |
- | [[Category: Plant protein]]
| + | |
- | [[Category: Pyl10]]
| + | |
- | [[Category: Pyr/pyl/rcar]]
| + | |
| Structural highlights
Function
PYL10_ARATH Receptor for abscisic acid (ABA) required for ABA-mediated responses such as stomatal closure and germination inhibition. Inhibits the activity of group-A protein phosphatases type 2C (PP2Cs) when activated by ABA (By similarity).
Publication Abstract from PubMed
Drought causes crop losses worldwide, and its impact is expected to increase as the world warms. This has motivated the development of small-molecule tools for mitigating the effects of drought on agriculture. We show here that current leads are limited by poor bioactivity in wheat, a widely grown staple crop, and in tomato. To address this limitation, we combined virtual screening, x-ray crystallography, and structure-guided design to develop opabactin (OP), an abscisic acid (ABA) mimic with up to an approximately sevenfold increase in receptor affinity relative to ABA and up to 10-fold greater activity in vivo. Studies in Arabidopsis thaliana reveal a role of the type III receptor PYRABACTIN RESISTANCE-LIKE 2 for the antitranspirant efficacy of OP. Thus, virtual screening and structure-guided optimization yielded newly discovered agonists for manipulating crop abiotic stress tolerance and water use.
Dynamic control of plant water use using designed ABA receptor agonists.,Vaidya AS, Helander JDM, Peterson FC, Elzinga D, Dejonghe W, Kaundal A, Park SY, Xing Z, Mega R, Takeuchi J, Khanderahoo B, Bishay S, Volkman BF, Todoroki Y, Okamoto M, Cutler SR Science. 2019 Oct 25;366(6464). pii: 366/6464/eaaw8848. doi:, 10.1126/science.aaw8848. PMID:31649167[1]
From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.
See Also
References
- ↑ Vaidya AS, Helander JDM, Peterson FC, Elzinga D, Dejonghe W, Kaundal A, Park SY, Xing Z, Mega R, Takeuchi J, Khanderahoo B, Bishay S, Volkman BF, Todoroki Y, Okamoto M, Cutler SR. Dynamic control of plant water use using designed ABA receptor agonists. Science. 2019 Oct 25;366(6464). pii: 366/6464/eaaw8848. doi:, 10.1126/science.aaw8848. PMID:31649167 doi:http://dx.doi.org/10.1126/science.aaw8848
|