6d1v

From Proteopedia

(Difference between revisions)
Jump to: navigation, search
Current revision (14:32, 13 March 2024) (edit) (undo)
 
Line 3: Line 3:
<StructureSection load='6d1v' size='340' side='right'caption='[[6d1v]], [[Resolution|resolution]] 1.81&Aring;' scene=''>
<StructureSection load='6d1v' size='340' side='right'caption='[[6d1v]], [[Resolution|resolution]] 1.81&Aring;' scene=''>
== Structural highlights ==
== Structural highlights ==
-
<table><tr><td colspan='2'>[[6d1v]] is a 3 chain structure with sequence from [http://en.wikipedia.org/wiki/Ecoli Ecoli]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=6D1V OCA]. For a <b>guided tour on the structure components</b> use [http://oca.weizmann.ac.il/oca-docs/fgij/fg.htm?mol=6D1V FirstGlance]. <br>
+
<table><tr><td colspan='2'>[[6d1v]] is a 3 chain structure with sequence from [https://en.wikipedia.org/wiki/Escherichia_coli Escherichia coli] and [https://en.wikipedia.org/wiki/Escherichia_coli_K-12 Escherichia coli K-12]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=6D1V OCA]. For a <b>guided tour on the structure components</b> use [https://proteopedia.org/fgij/fg.htm?mol=6D1V FirstGlance]. <br>
-
</td></tr><tr id='ligand'><td class="sblockLbl"><b>[[Ligand|Ligands:]]</b></td><td class="sblockDat"><scene name='pdbligand=CL:CHLORIDE+ION'>CL</scene>, <scene name='pdbligand=GOL:GLYCEROL'>GOL</scene>, <scene name='pdbligand=MG:MAGNESIUM+ION'>MG</scene></td></tr>
+
</td></tr><tr id='method'><td class="sblockLbl"><b>[[Empirical_models|Method:]]</b></td><td class="sblockDat" id="methodDat">X-ray diffraction, [[Resolution|Resolution]] 1.81&#8491;</td></tr>
-
<tr id='NonStdRes'><td class="sblockLbl"><b>[[Non-Standard_Residue|NonStd Res:]]</b></td><td class="sblockDat"><scene name='pdbligand=APC:DIPHOSPHOMETHYLPHOSPHONIC+ACID+ADENOSYL+ESTER'>APC</scene></td></tr>
+
<tr id='ligand'><td class="sblockLbl"><b>[[Ligand|Ligands:]]</b></td><td class="sblockDat" id="ligandDat"><scene name='pdbligand=APC:DIPHOSPHOMETHYLPHOSPHONIC+ACID+ADENOSYL+ESTER'>APC</scene>, <scene name='pdbligand=CL:CHLORIDE+ION'>CL</scene>, <scene name='pdbligand=GOL:GLYCEROL'>GOL</scene>, <scene name='pdbligand=MG:MAGNESIUM+ION'>MG</scene></td></tr>
-
<tr id='gene'><td class="sblockLbl"><b>[[Gene|Gene:]]</b></td><td class="sblockDat">dapF ([http://www.ncbi.nlm.nih.gov/Taxonomy/Browser/wwwtax.cgi?mode=Info&srchmode=5&id=83333 ECOLI]), rppH, nudH, ygdP, b2830, JW2798 ([http://www.ncbi.nlm.nih.gov/Taxonomy/Browser/wwwtax.cgi?mode=Info&srchmode=5&id=83333 ECOLI])</td></tr>
+
<tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[https://proteopedia.org/fgij/fg.htm?mol=6d1v FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=6d1v OCA], [https://pdbe.org/6d1v PDBe], [https://www.rcsb.org/pdb/explore.do?structureId=6d1v RCSB], [https://www.ebi.ac.uk/pdbsum/6d1v PDBsum], [https://prosat.h-its.org/prosat/prosatexe?pdbcode=6d1v ProSAT]</span></td></tr>
-
<tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[http://oca.weizmann.ac.il/oca-docs/fgij/fg.htm?mol=6d1v FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=6d1v OCA], [http://pdbe.org/6d1v PDBe], [http://www.rcsb.org/pdb/explore.do?structureId=6d1v RCSB], [http://www.ebi.ac.uk/pdbsum/6d1v PDBsum], [http://prosat.h-its.org/prosat/prosatexe?pdbcode=6d1v ProSAT]</span></td></tr>
+
</table>
</table>
== Function ==
== Function ==
-
[[http://www.uniprot.org/uniprot/DAPF_ECOLI DAPF_ECOLI]] Catalyzes the stereoinversion of LL-2,6-diaminoheptanedioate (L,L-DAP) to meso-diaminoheptanedioate (meso-DAP), a precursor of L-lysine and an essential component of the bacterial peptidoglycan. Only accepts DAP isomers with the L configuration.<ref>PMID:6378903</ref> <ref>PMID:3031013</ref> <ref>PMID:3042781</ref> [[http://www.uniprot.org/uniprot/RPPH_ECOLI RPPH_ECOLI]] Master regulator of 5'-dependent mRNA decay. Accelerates the degradation of transcripts by removing pyrophosphate from the 5'-end of triphosphorylated RNA, leading to a more labile monophosphorylated state that can stimulate subsequent ribonuclease cleavage. Preferentially hydrolyzes diadenosine penta-phosphate with ATP as one of the reaction products. Also able to hydrolyze diadenosine hexa- and tetra-phosphate. Has no activity on diadenosine tri-phosphate, ADP-ribose, NADH and UDP-glucose. In the meningitis causing strain E.coli K1, has been shown to play a role in HBMEC (human brain microvascular endothelial cells) invasion in vitro.<ref>PMID:10760174</ref> <ref>PMID:18202662</ref>
+
[https://www.uniprot.org/uniprot/DAPF_ECOLI DAPF_ECOLI] Catalyzes the stereoinversion of LL-2,6-diaminoheptanedioate (L,L-DAP) to meso-diaminoheptanedioate (meso-DAP), a precursor of L-lysine and an essential component of the bacterial peptidoglycan. Only accepts DAP isomers with the L configuration.<ref>PMID:6378903</ref> <ref>PMID:3031013</ref> <ref>PMID:3042781</ref>
-
<div style="background-color:#fffaf0;">
+
-
== Publication Abstract from PubMed ==
+
-
Vitally important for controlling gene expression in eukaryotes and prokaryotes, the deprotection of mRNA 5' termini is governed by enzymes whose activity is modulated by interactions with ancillary factors. In Escherichia coli, 5'-end-dependent mRNA degradation begins with the generation of monophosphorylated 5' termini by the RNA pyrophosphohydrolase RppH, which can be stimulated by DapF, a diaminopimelate epimerase involved in amino acid and cell wall biosynthesis. We have determined crystal structures of RppH-DapF complexes and measured rates of RNA deprotection. These studies show that DapF potentiates RppH activity in two ways, depending on the nature of the substrate. Its stimulatory effect on the reactivity of diphosphorylated RNAs, the predominant natural substrates of RppH, requires a substrate long enough to reach DapF in the complex, while the enhanced reactivity of triphosphorylated RNAs appears to involve DapF-induced changes in RppH itself and likewise increases with substrate length. This study provides a basis for understanding the intricate relationship between cellular metabolism and mRNA decay and reveals striking parallels with the stimulation of decapping activity in eukaryotes.
+
-
 
+
-
Structural and kinetic insights into stimulation of RppH-dependent RNA degradation by the metabolic enzyme DapF.,Gao A, Vasilyev N, Luciano DJ, Levenson-Palmer R, Richards J, Marsiglia WM, Traaseth NJ, Belasco JG, Serganov A Nucleic Acids Res. 2018 May 4. pii: 4992646. doi: 10.1093/nar/gky327. PMID:29733359<ref>PMID:29733359</ref>
+
-
 
+
-
From MEDLINE&reg;/PubMed&reg;, a database of the U.S. National Library of Medicine.<br>
+
-
</div>
+
-
<div class="pdbe-citations 6d1v" style="background-color:#fffaf0;"></div>
+
== References ==
== References ==
<references/>
<references/>
__TOC__
__TOC__
</StructureSection>
</StructureSection>
-
[[Category: Ecoli]]
+
[[Category: Escherichia coli]]
 +
[[Category: Escherichia coli K-12]]
[[Category: Large Structures]]
[[Category: Large Structures]]
-
[[Category: Gao, A]]
+
[[Category: Gao A]]
-
[[Category: Serganov, A]]
+
[[Category: Serganov A]]
-
[[Category: Dapf]]
+
-
[[Category: Isomerase-hydrolase complex]]
+
-
[[Category: Isomerase-hydrolase-rna complex]]
+
-
[[Category: Rna decay]]
+
-
[[Category: Rpph]]
+

Current revision

Crystal structure of E. coli RppH-DapF complex, monomer bound to RNA

PDB ID 6d1v

Drag the structure with the mouse to rotate

Proteopedia Page Contributors and Editors (what is this?)

OCA

Personal tools