|
|
(One intermediate revision not shown.) |
Line 3: |
Line 3: |
| <StructureSection load='4y5j' size='340' side='right'caption='[[4y5j]], [[Resolution|resolution]] 2.30Å' scene=''> | | <StructureSection load='4y5j' size='340' side='right'caption='[[4y5j]], [[Resolution|resolution]] 2.30Å' scene=''> |
| == Structural highlights == | | == Structural highlights == |
- | <table><tr><td colspan='2'>[[4y5j]] is a 1 chain structure with sequence from [http://en.wikipedia.org/wiki/Drome Drome]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=4Y5J OCA]. For a <b>guided tour on the structure components</b> use [http://oca.weizmann.ac.il/oca-docs/fgij/fg.htm?mol=4Y5J FirstGlance]. <br> | + | <table><tr><td colspan='2'>[[4y5j]] is a 1 chain structure with sequence from [https://en.wikipedia.org/wiki/Drosophila_melanogaster Drosophila melanogaster]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=4Y5J OCA]. For a <b>guided tour on the structure components</b> use [https://proteopedia.org/fgij/fg.htm?mol=4Y5J FirstGlance]. <br> |
- | </td></tr><tr id='gene'><td class="sblockLbl"><b>[[Gene|Gene:]]</b></td><td class="sblockDat">msps, CG5000, Dmel_CG5000 ([http://www.ncbi.nlm.nih.gov/Taxonomy/Browser/wwwtax.cgi?mode=Info&srchmode=5&id=7227 DROME])</td></tr> | + | </td></tr><tr id='method'><td class="sblockLbl"><b>[[Empirical_models|Method:]]</b></td><td class="sblockDat" id="methodDat">X-ray diffraction, [[Resolution|Resolution]] 2.303Å</td></tr> |
- | <tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[http://oca.weizmann.ac.il/oca-docs/fgij/fg.htm?mol=4y5j FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=4y5j OCA], [http://pdbe.org/4y5j PDBe], [http://www.rcsb.org/pdb/explore.do?structureId=4y5j RCSB], [http://www.ebi.ac.uk/pdbsum/4y5j PDBsum], [http://prosat.h-its.org/prosat/prosatexe?pdbcode=4y5j ProSAT]</span></td></tr> | + | <tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[https://proteopedia.org/fgij/fg.htm?mol=4y5j FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=4y5j OCA], [https://pdbe.org/4y5j PDBe], [https://www.rcsb.org/pdb/explore.do?structureId=4y5j RCSB], [https://www.ebi.ac.uk/pdbsum/4y5j PDBsum], [https://prosat.h-its.org/prosat/prosatexe?pdbcode=4y5j ProSAT]</span></td></tr> |
| </table> | | </table> |
- | <div style="background-color:#fffaf0;">
| + | == Function == |
- | == Publication Abstract from PubMed == | + | [https://www.uniprot.org/uniprot/MSPS_DROME MSPS_DROME] Binds to the plus end of microtubules and regulates microtubule dynamics and microtubule organization. Promotes cytoplasmic microtubule nucleation and elongation. May act as a microtubule antipause factor that rapidly catalyzes the transition from pause to either growth or shrinkage. Involved in mitotic spindle elongation. Involved in the establishment of cell polarity and mitotic spindle orientation in neuroblasts. Required for maintaining the bipolarity of acentrosomal meiotic spindles; the function is dependent on tacc and involves ncd. Involved in oocyte microtubule cytoskeleton organization and bicoid mRNA localization. Seems to be involved in elongation of kinetochore-derived microtubule fibers.<ref>PMID:10477755</ref> <ref>PMID:11433295</ref> <ref>PMID:15530399</ref> <ref>PMID:15775959</ref> <ref>PMID:16303556</ref> <ref>PMID:17889670</ref> <ref>PMID:26953351</ref> <ref>PMID:21965297</ref> |
- | Microtubule-associated proteins (MAPs) regulate microtubule (MT) dynamics spatially and temporally, which is essential for proper formation of the bipolar mitotic spindle. The XMAP215 family are conserved MAPs that use an array of tubulin-binding tumor overexpressed gene (TOG) domains, consisting of six (A-F) HEAT repeats (HRs), to robustly increase MT plus-end polymerization rates. Recent work showed that TOG domains have differential, conserved architectures across the array, with implications for position-dependent TOG domain tubulin-binding activities and function within the XMAP215 MT polymerization mechanism. Although TOG domains 1, 2, and 4 are well-described, structural and mechanistic information characterizing TOG domains 3 and 5 is outstanding. Here we present the structure and characterization of Drosophila melanogaster Msps TOG3. Msps TOG3 has two unique features; the first is a C-terminal tail that stabilizes the ultimate four HRs, and the second is a unique architecture in HR B. Structural alignments of TOG3 with other TOG domain structures show that the architecture of TOG3 is most similar to TOG domains 1 and 2, and diverges from TOG4. Docking TOG3 onto recently solved Stu2 TOG1- and TOG2-tubulin complex structures suggests that TOG3 uses similar, conserved tubulin-binding intra-HEAT loop residues to engage alpha- and beta-tubulin. This indicates that TOG3 has maintained a TOG1- and TOG2-like TOG-tubulin binding mode despite structural divergence. The similarity of TOG domains 1-3 and the divergence of TOG4 suggest that a TOG domain array with polarized structural diversity may play a key mechanistic role in XMAP215-dependent MT polymerization activity.
| + | |
- | | + | |
- | Drosophila melanogaster Msps TOG3 utilizes unique structural elements to promote domain stability and maintain a TOG1- and TOG2-like tubulin-binding surface.,Howard AE, Fox JC, Slep KC J Biol Chem. 2015 Feb 26. pii: jbc.M114.633826. PMID:25720490<ref>PMID:25720490</ref>
| + | |
- | | + | |
- | From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.<br>
| + | |
- | </div> | + | |
- | <div class="pdbe-citations 4y5j" style="background-color:#fffaf0;"></div> | + | |
| == References == | | == References == |
| <references/> | | <references/> |
| __TOC__ | | __TOC__ |
| </StructureSection> | | </StructureSection> |
- | [[Category: Drome]] | + | [[Category: Drosophila melanogaster]] |
| [[Category: Large Structures]] | | [[Category: Large Structures]] |
- | [[Category: Howard, A E]] | + | [[Category: Howard AE]] |
- | [[Category: Slep, K C]] | + | [[Category: Slep KC]] |
- | [[Category: Microtubule polymerization]]
| + | |
- | [[Category: Protein binding]]
| + | |
- | [[Category: Tog]]
| + | |
- | [[Category: Xmap215]]
| + | |
| Structural highlights
Function
MSPS_DROME Binds to the plus end of microtubules and regulates microtubule dynamics and microtubule organization. Promotes cytoplasmic microtubule nucleation and elongation. May act as a microtubule antipause factor that rapidly catalyzes the transition from pause to either growth or shrinkage. Involved in mitotic spindle elongation. Involved in the establishment of cell polarity and mitotic spindle orientation in neuroblasts. Required for maintaining the bipolarity of acentrosomal meiotic spindles; the function is dependent on tacc and involves ncd. Involved in oocyte microtubule cytoskeleton organization and bicoid mRNA localization. Seems to be involved in elongation of kinetochore-derived microtubule fibers.[1] [2] [3] [4] [5] [6] [7] [8]
References
- ↑ Cullen CF, Deak P, Glover DM, Ohkura H. mini spindles: A gene encoding a conserved microtubule-associated protein required for the integrity of the mitotic spindle in Drosophila. J Cell Biol. 1999 Sep 6;146(5):1005-18. PMID:10477755
- ↑ Cullen CF, Ohkura H. Msps protein is localized to acentrosomal poles to ensure bipolarity of Drosophila meiotic spindles. Nat Cell Biol. 2001 Jul;3(7):637-42. PMID:11433295 doi:http://dx.doi.org/10.1038/35083025
- ↑ Moon W, Hazelrigg T. The Drosophila microtubule-associated protein mini spindles is required for cytoplasmic microtubules in oogenesis. Curr Biol. 2004 Nov 9;14(21):1957-61. PMID:15530399 doi:http://dx.doi.org/10.1016/j.cub.2004.10.023
- ↑ Brittle AL, Ohkura H. Mini spindles, the XMAP215 homologue, suppresses pausing of interphase microtubules in Drosophila. EMBO J. 2005 Apr 6;24(7):1387-96. Epub 2005 Mar 17. PMID:15775959 doi:http://dx.doi.org/10.1038/sj.emboj.7600629
- ↑ Goshima G, Wollman R, Stuurman N, Scholey JM, Vale RD. Length control of the metaphase spindle. Curr Biol. 2005 Nov 22;15(22):1979-88. PMID:16303556 doi:10.1016/j.cub.2005.09.054
- ↑ Slep KC, Vale RD. Structural basis of microtubule plus end tracking by XMAP215, CLIP-170, and EB1. Mol Cell. 2007 Sep 21;27(6):976-91. PMID:17889670 doi:10.1016/j.molcel.2007.07.023
- ↑ Chen K, Koe CT, Xing ZB, Tian X, Rossi F, Wang C, Tang Q, Zong W, Hong WJ, Taneja R, Yu F, Gonzalez C, Wu C, Endow S, Wang H. Arl2- and Msps-dependent microtubule growth governs asymmetric division. J Cell Biol. 2016 Mar 14;212(6):661-76. doi: 10.1083/jcb.201503047. Epub 2016 Mar, 7. PMID:26953351 doi:http://dx.doi.org/10.1083/jcb.201503047
- ↑ Currie JD, Stewman S, Schimizzi G, Slep KC, Ma A, Rogers SL. The microtubule lattice and plus-end association of Drosophila Mini spindles is spatially regulated to fine-tune microtubule dynamics. Mol Biol Cell. 2011 Nov;22(22):4343-61. doi: 10.1091/mbc.E11-06-0520. Epub 2011, Sep 30. PMID:21965297 doi:http://dx.doi.org/10.1091/mbc.E11-06-0520
|