|
|
(One intermediate revision not shown.) |
Line 3: |
Line 3: |
| <StructureSection load='1w6t' size='340' side='right'caption='[[1w6t]], [[Resolution|resolution]] 2.10Å' scene=''> | | <StructureSection load='1w6t' size='340' side='right'caption='[[1w6t]], [[Resolution|resolution]] 2.10Å' scene=''> |
| == Structural highlights == | | == Structural highlights == |
- | <table><tr><td colspan='2'>[[1w6t]] is a 2 chain structure with sequence from [http://en.wikipedia.org/wiki/Strpn Strpn]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=1W6T OCA]. For a <b>guided tour on the structure components</b> use [http://oca.weizmann.ac.il/oca-docs/fgij/fg.htm?mol=1W6T FirstGlance]. <br> | + | <table><tr><td colspan='2'>[[1w6t]] is a 2 chain structure with sequence from [https://en.wikipedia.org/wiki/Streptococcus_pneumoniae_TIGR4 Streptococcus pneumoniae TIGR4]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=1W6T OCA]. For a <b>guided tour on the structure components</b> use [https://proteopedia.org/fgij/fg.htm?mol=1W6T FirstGlance]. <br> |
- | </td></tr><tr id='ligand'><td class="sblockLbl"><b>[[Ligand|Ligands:]]</b></td><td class="sblockDat"><scene name='pdbligand=2PE:NONAETHYLENE+GLYCOL'>2PE</scene>, <scene name='pdbligand=MG:MAGNESIUM+ION'>MG</scene></td></tr> | + | </td></tr><tr id='method'><td class="sblockLbl"><b>[[Empirical_models|Method:]]</b></td><td class="sblockDat" id="methodDat">X-ray diffraction, [[Resolution|Resolution]] 2.1Å</td></tr> |
- | <tr id='activity'><td class="sblockLbl"><b>Activity:</b></td><td class="sblockDat"><span class='plainlinks'>[http://en.wikipedia.org/wiki/Phosphopyruvate_hydratase Phosphopyruvate hydratase], with EC number [http://www.brenda-enzymes.info/php/result_flat.php4?ecno=4.2.1.11 4.2.1.11] </span></td></tr> | + | <tr id='ligand'><td class="sblockLbl"><b>[[Ligand|Ligands:]]</b></td><td class="sblockDat" id="ligandDat"><scene name='pdbligand=2PE:NONAETHYLENE+GLYCOL'>2PE</scene>, <scene name='pdbligand=MG:MAGNESIUM+ION'>MG</scene></td></tr> |
- | <tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[http://oca.weizmann.ac.il/oca-docs/fgij/fg.htm?mol=1w6t FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=1w6t OCA], [http://pdbe.org/1w6t PDBe], [http://www.rcsb.org/pdb/explore.do?structureId=1w6t RCSB], [http://www.ebi.ac.uk/pdbsum/1w6t PDBsum], [http://prosat.h-its.org/prosat/prosatexe?pdbcode=1w6t ProSAT]</span></td></tr> | + | <tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[https://proteopedia.org/fgij/fg.htm?mol=1w6t FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=1w6t OCA], [https://pdbe.org/1w6t PDBe], [https://www.rcsb.org/pdb/explore.do?structureId=1w6t RCSB], [https://www.ebi.ac.uk/pdbsum/1w6t PDBsum], [https://prosat.h-its.org/prosat/prosatexe?pdbcode=1w6t ProSAT]</span></td></tr> |
| </table> | | </table> |
| + | == Function == |
| + | [https://www.uniprot.org/uniprot/ENO_STRPN ENO_STRPN] Catalyzes the reversible conversion of 2-phosphoglycerate into phosphoenolpyruvate. It is essential for the degradation of carbohydrates via glycolysis. Binds plasminogen when expressed at the bacterial cell surface, potentially allowing the bacterium to acquire surface-associated proteolytic activity, which in turn contributes to the degradation of the extracellular matrix and transmigration of the bacteria.[HAMAP-Rule:MF_00318]<ref>PMID:11442827</ref> <ref>PMID:12435062</ref> <ref>PMID:16113819</ref> |
| == Evolutionary Conservation == | | == Evolutionary Conservation == |
| [[Image:Consurf_key_small.gif|200px|right]] | | [[Image:Consurf_key_small.gif|200px|right]] |
Line 35: |
Line 37: |
| </StructureSection> | | </StructureSection> |
| [[Category: Large Structures]] | | [[Category: Large Structures]] |
- | [[Category: Phosphopyruvate hydratase]] | + | [[Category: Streptococcus pneumoniae TIGR4]] |
- | [[Category: Strpn]]
| + | [[Category: Bergmann S]] |
- | [[Category: Bergmann, S]] | + | [[Category: Ehinger S]] |
- | [[Category: Ehinger, S]] | + | [[Category: Hammerschmidt S]] |
- | [[Category: Hammerschmidt, S]] | + | [[Category: Heinz DW]] |
- | [[Category: Heinz, D W]] | + | [[Category: Schubert W-D]] |
- | [[Category: Schubert, W D]] | + | |
- | [[Category: Bacterial infection]]
| + | |
- | [[Category: Glycolysis]]
| + | |
- | [[Category: Lyase]]
| + | |
- | [[Category: Moonlighting protein]]
| + | |
- | [[Category: Surface protein]]
| + | |
| Structural highlights
Function
ENO_STRPN Catalyzes the reversible conversion of 2-phosphoglycerate into phosphoenolpyruvate. It is essential for the degradation of carbohydrates via glycolysis. Binds plasminogen when expressed at the bacterial cell surface, potentially allowing the bacterium to acquire surface-associated proteolytic activity, which in turn contributes to the degradation of the extracellular matrix and transmigration of the bacteria.[HAMAP-Rule:MF_00318][1] [2] [3]
Evolutionary Conservation
Check, as determined by ConSurfDB. You may read the explanation of the method and the full data available from ConSurf.
Publication Abstract from PubMed
Alpha-enolases are ubiquitous cytoplasmic, glycolytic enzymes. In pathogenic bacteria, alpha-enolase doubles as a surface-displayed plasmin(ogen)-binder supporting virulence. The plasmin(ogen)-binding site was initially traced to the two C-terminal lysine residues. More recently, an internal nine-amino acid motif comprising residues 248 to 256 was identified with this function. We report the crystal structure of alpha-enolase from Streptococcus pneumoniae at 2.0A resolution, the first structure both of a plasminogen-binding and of an octameric alpha-enolase. While the dimer is structurally similar to other alpha-enolases, the octamer places the C-terminal lysine residues in an inaccessible, inter-dimer groove restricting the C-terminal lysine residues to a role in folding and oligomerization. The nine residue plasminogen-binding motif, by contrast, is exposed on the octamer surface revealing this as the primary site of interaction between alpha-enolase and plasminogen.
Plasmin(ogen)-binding alpha-enolase from Streptococcus pneumoniae: crystal structure and evaluation of plasmin(ogen)-binding sites.,Ehinger S, Schubert WD, Bergmann S, Hammerschmidt S, Heinz DW J Mol Biol. 2004 Oct 29;343(4):997-1005. PMID:15476816[4]
From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.
See Also
References
- ↑ Bergmann S, Rohde M, Chhatwal GS, Hammerschmidt S. alpha-Enolase of Streptococcus pneumoniae is a plasmin(ogen)-binding protein displayed on the bacterial cell surface. Mol Microbiol. 2001 Jun;40(6):1273-87. PMID:11442827 doi:10.1046/j.1365-2958.2001.02448.x
- ↑ Whiting GC, Evans JT, Patel S, Gillespie SH. Purification of native alpha-enolase from Streptococcus pneumoniae that binds plasminogen and is immunogenic. J Med Microbiol. 2002 Oct;51(10):837-843. PMID:12435062 doi:10.1099/0022-1317-51-10-837
- ↑ Bergmann S, Rohde M, Preissner KT, Hammerschmidt S. The nine residue plasminogen-binding motif of the pneumococcal enolase is the major cofactor of plasmin-mediated degradation of extracellular matrix, dissolution of fibrin and transmigration. Thromb Haemost. 2005 Aug;94(2):304-11. PMID:16113819 doi:10.1160/TH05-05-0369
- ↑ Ehinger S, Schubert WD, Bergmann S, Hammerschmidt S, Heinz DW. Plasmin(ogen)-binding alpha-enolase from Streptococcus pneumoniae: crystal structure and evaluation of plasmin(ogen)-binding sites. J Mol Biol. 2004 Oct 29;343(4):997-1005. PMID:15476816 doi:10.1016/j.jmb.2004.08.088
|