|
|
(2 intermediate revisions not shown.) |
Line 1: |
Line 1: |
| | | |
| ==Solution structure of CM15 in DPC micelles== | | ==Solution structure of CM15 in DPC micelles== |
- | <StructureSection load='2jmy' size='340' side='right'caption='[[2jmy]], [[NMR_Ensembles_of_Models | 19 NMR models]]' scene=''> | + | <StructureSection load='2jmy' size='340' side='right'caption='[[2jmy]]' scene=''> |
| == Structural highlights == | | == Structural highlights == |
- | <table><tr><td colspan='2'>[[2jmy]] is a 1 chain structure. Full experimental information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=2JMY OCA]. For a <b>guided tour on the structure components</b> use [http://oca.weizmann.ac.il/oca-docs/fgij/fg.htm?mol=2JMY FirstGlance]. <br> | + | <table><tr><td colspan='2'>[[2jmy]] is a 1 chain structure with sequence from [https://en.wikipedia.org/wiki/Synthetic_construct Synthetic construct]. Full experimental information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=2JMY OCA]. For a <b>guided tour on the structure components</b> use [https://proteopedia.org/fgij/fg.htm?mol=2JMY FirstGlance]. <br> |
- | </td></tr><tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[http://oca.weizmann.ac.il/oca-docs/fgij/fg.htm?mol=2jmy FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=2jmy OCA], [http://pdbe.org/2jmy PDBe], [http://www.rcsb.org/pdb/explore.do?structureId=2jmy RCSB], [http://www.ebi.ac.uk/pdbsum/2jmy PDBsum], [http://prosat.h-its.org/prosat/prosatexe?pdbcode=2jmy ProSAT]</span></td></tr> | + | </td></tr><tr id='method'><td class="sblockLbl"><b>[[Empirical_models|Method:]]</b></td><td class="sblockDat" id="methodDat">Solution NMR</td></tr> |
| + | <tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[https://proteopedia.org/fgij/fg.htm?mol=2jmy FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=2jmy OCA], [https://pdbe.org/2jmy PDBe], [https://www.rcsb.org/pdb/explore.do?structureId=2jmy RCSB], [https://www.ebi.ac.uk/pdbsum/2jmy PDBsum], [https://prosat.h-its.org/prosat/prosatexe?pdbcode=2jmy ProSAT]</span></td></tr> |
| </table> | | </table> |
| <div style="background-color:#fffaf0;"> | | <div style="background-color:#fffaf0;"> |
Line 20: |
Line 21: |
| </StructureSection> | | </StructureSection> |
| [[Category: Large Structures]] | | [[Category: Large Structures]] |
- | [[Category: Goebl, C]] | + | [[Category: Synthetic construct]] |
- | [[Category: Golser, R]] | + | [[Category: Goebl C]] |
- | [[Category: Madl, T]] | + | [[Category: Golser R]] |
- | [[Category: Respondek, M]] | + | [[Category: Madl T]] |
- | [[Category: Zangger, K]] | + | [[Category: Respondek M]] |
- | [[Category: Antimicrobial]]
| + | [[Category: Zangger K]] |
- | [[Category: Antimicrobial protein]]
| + | |
- | [[Category: Dpc micelle]]
| + | |
| Structural highlights
Publication Abstract from PubMed
Many antimicrobial peptides form alpha-helices when bound to a membrane. In addition, around 80% of residues in membrane-bound proteins are found in alpha-helical regions. The orientation and location of such helical peptides and proteins in the membrane are key factors determining their function and activity. Here we present a new solution state NMR method for obtaining the orientation of helical peptides in a membrane-mimetic environment (micelle-bound) without any chemical perturbation of the peptide-micelle system. By monitoring proton longitudinal relaxation rates upon addition of the freely water-soluble and inert paramagnetic probe Gd(DTPA-BMA) to an alpha-helical peptide, a wavelike pattern with a periodicity of 3.6 residues per turn is observed. The tilt and azimuth (rotation) angle of the helix determine the shape of this paramagnetic relaxation wave and can be obtained by least-square fitting of measured relaxation enhancements. Results are presented for the 15-residue antimicrobial peptide CM15 which forms an amphipathic helix almost parallel to the surface of the micelle. Thus, a few fast experiments enable the identification of helical regions and determination of the helix orientation within the micelle without the need for covalent modification, isotopic labeling, or sophisticated equipment. This approach opens a path toward the topology determination of alpha-helical membrane-proteins without the need for a complete NOE-based structure determination.
Mapping the orientation of helices in micelle-bound peptides by paramagnetic relaxation waves.,Respondek M, Madl T, Gobl C, Golser R, Zangger K J Am Chem Soc. 2007 Apr 25;129(16):5228-34. Epub 2007 Mar 31. PMID:17397158[1]
From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.
References
- ↑ Respondek M, Madl T, Gobl C, Golser R, Zangger K. Mapping the orientation of helices in micelle-bound peptides by paramagnetic relaxation waves. J Am Chem Soc. 2007 Apr 25;129(16):5228-34. Epub 2007 Mar 31. PMID:17397158 doi:http://dx.doi.org/10.1021/ja069004f
|