User:Nikhil Malvankar/Cytochrome nanowires

From Proteopedia

< User:Nikhil Malvankar(Difference between revisions)
Jump to: navigation, search
Current revision (16:26, 18 February 2020) (edit) (undo)
 
(17 intermediate revisions not shown.)
Line 1: Line 1:
[[Interactive_3D_Complement_in_Proteopedia|Interactive 3D Complement in Proteopedia]]<br>
[[Interactive_3D_Complement_in_Proteopedia|Interactive 3D Complement in Proteopedia]]<br>
 +
<table width="95%" border="0"><tr><td>
{| align="left"
{| align="left"
|-
|-
Line 8: Line 9:
</imagemap>
</imagemap>
|}
|}
-
<!-- cannot get a blank line here so using a blank white image; for more about linked images like the one above see Molecular Workbench -->
+
</td></tr><tr><td>
-
[[Image:Blank-white-30x460px.png]]<br>
+
 
-
<span style="font-size:160%"><b>Structure of Microbial Nanowires Reveals Stacked Hemes that Transport Electrons over Micrometers<ref name="m3" />.</b></span><br><br>
+
<span style="font-size:160%"><b>Structure of Microbial Nanowires Reveals Stacked Hemes that Transport Electrons over Micrometers<ref name="m3" />.</b></span>
 +
</td></tr><tr><td>
 +
 
<span style="font-size:120%">
<span style="font-size:120%">
Fengbin '''Wang''',
Fengbin '''Wang''',
Line 28: Line 31:
April 4, 2019. [http://doi.org/10.1016/j.cell.2019.03.029 doi:10.1016/j.cell.2019.03.029]
April 4, 2019. [http://doi.org/10.1016/j.cell.2019.03.029 doi:10.1016/j.cell.2019.03.029]
</span>
</span>
 +
</td></tr></table>
==Structure Tour==
==Structure Tour==
Line 36: Line 40:
===Nanowire Structure===
===Nanowire Structure===
 +
<center>{{Template:Green links zoom}}</center>
A nanowire model composed of 7 OmcS protein chains, each shown a different color, was constructed from the 3.2-3.7 Å cryo-EM density (<scene name='83/835223/Filament/1'>restore initial scene</scene>). The filament is ~4 nm in diamater, and has a characteristic undulating or sinusoidal form with a wavelength (pitch) of ~20 nm. The OmcS monomers have 407 amino acids each. The <scene name='83/835223/Filament/4'>carboxy terminus of each monomer contacts the amino terminus of the next</scene>.
A nanowire model composed of 7 OmcS protein chains, each shown a different color, was constructed from the 3.2-3.7 Å cryo-EM density (<scene name='83/835223/Filament/1'>restore initial scene</scene>). The filament is ~4 nm in diamater, and has a characteristic undulating or sinusoidal form with a wavelength (pitch) of ~20 nm. The OmcS monomers have 407 amino acids each. The <scene name='83/835223/Filament/4'>carboxy terminus of each monomer contacts the amino terminus of the next</scene>.
Line 75: Line 80:
===Salt Bridges===
===Salt Bridges===
-
Using a 4.0 Å cutoff, [[6ef8]] has 7 salt bridges between amino acid sidechains (not shown). One of these, Arg176 to Asp432, is between protein chains, further strengthening the interfaces between monomers in the filament.
+
Using a 4.0 Å cutoff, [[6ef8]] has 7 salt bridges between amino acid sidechains (not shown). One of these, <scene name='83/835223/Inter-chain_salt_bridge/2'>Arg176 to Asp432 (2.6 Å)</scene> (<font color="#6070cf">'''Chain A'''</font>, <font color="#40af58">'''Chain B'''</font>,
 +
{{Template:ColorKey_Element_O}},
 +
{{Template:ColorKey_Element_N}}),
 +
is between protein chains, further strengthening the interfaces between monomers in the filament. (These opposing charges are 4.9 Å apart in [[6nef]].)
The amino-terminal NH<sup>3</sup>+ on Phe 1 forms a salt bridge with one carboxy of heme 2 (HEC503; 3.65 Å; not shown).
The amino-terminal NH<sup>3</sup>+ on Phe 1 forms a salt bridge with one carboxy of heme 2 (HEC503; 3.65 Å; not shown).
Line 82: Line 90:
===Buried Cations===
===Buried Cations===
-
The <scene name='83/835223/Buried_cations/1'>sidechain nitrogens of Arg333, Arg344, and Arg375 are buried</scene>. None have anions within 5 Å (not shown). The cationic sidechains of Arg333 and Arg344 touch each other (3.0 Å). These characteristics are confirmed in [[6nef]]. The presence of these cations deep within OmcS is plausible, since proteins of this size have, on average, several buried charges<ref name="pace">PMID: 19164280</ref><ref name="kajander">PMID: 11080642</ref>. Moreover, on average from many proteins, more than half of all arginine guanidiniums are buried<ref name="pace" />. Burying charge seems to be an important factor in how evolution regulates protein stability<ref name="pace" /><ref name="kajander" />.
+
The <scene name='83/835223/Buried_cations/1'>sidechain nitrogens of Arg333, Arg344, and Arg375 are buried</scene>. None have anions within 5 Å (not shown). The sidechain nitrogens of Arg333 and Arg344 touch each other (3.0 Å). These characteristics are confirmed in [[6nef]]. The presence of these cations deep within OmcS is plausible, since proteins of this size have, on average, several buried charges<ref name="pace">PMID: 19164280</ref><ref name="kajander">PMID: 11080642</ref>. Moreover, on average from many proteins, more than half of all arginine guanidiniums are buried<ref name="pace" />. Burying charge seems to be an important factor in how evolution regulates protein stability<ref name="pace" /><ref name="kajander" />.
The buried contact between two usually-cationic sidechains of Arg333 and Arg344 is also plausible because, when buried, the positive charge of the guanidinium group can be greatly diminished due to dehydration and nearby positive charges<ref name="pace" />. Although hydrated guanidinium retains more than half of its charge when the pH is below ~12 (its intrinsic pKa<ref name="pace" />), dehydration due to burial decreases the pKa. Furthermore, the samples for cryo-electron microscopy were prepared at pH 10.5<ref name="m3" /> (despite the pH being incorrectly stated as 7.0 in REMARK 245 of the PDB file).
The buried contact between two usually-cationic sidechains of Arg333 and Arg344 is also plausible because, when buried, the positive charge of the guanidinium group can be greatly diminished due to dehydration and nearby positive charges<ref name="pace" />. Although hydrated guanidinium retains more than half of its charge when the pH is below ~12 (its intrinsic pKa<ref name="pace" />), dehydration due to burial decreases the pKa. Furthermore, the samples for cryo-electron microscopy were prepared at pH 10.5<ref name="m3" /> (despite the pH being incorrectly stated as 7.0 in REMARK 245 of the PDB file).
Line 98: Line 106:
<br>
<br>
-
<hr><br>
+
<hr>
-
 
+
<br>
-
==Download==
+
-
===Animations for Powerpoint===
+
-
Click images to see them full size, or to download them.
+
-
*
+
==See Also==
==See Also==

Current revision

Interactive 3D Complement in Proteopedia

About this image

Structure of Microbial Nanowires Reveals Stacked Hemes that Transport Electrons over Micrometers[1].

Fengbin Wang, Yanqui Gu, J. Patrick O'Brien, Sophia M. Yi, Sibel Ebru Yalcin, Vishok Srikanth, Cong Shen, Dennis Vu, Nicole L. Ing, Allon I. Hochbaum, Edward H. Egelman, and Nikhil S. Malvankar. Cell 177:361-9, April 4, 2019. doi:10.1016/j.cell.2019.03.029

Structure Tour

Geobacter sulfurreducens outer membrane cytochrome S (OmcS) 6ef8.

Drag the structure with the mouse to rotate




See Also

  • Malvankar: A list of all interactive 3D complements for publications from the Malvankar group.

Notes & References

  1. 1.0 1.1 1.2 1.3 Wang F, Gu Y, O'Brien JP, Yi SM, Yalcin SE, Srikanth V, Shen C, Vu D, Ing NL, Hochbaum AI, Egelman EH, Malvankar NS. Structure of Microbial Nanowires Reveals Stacked Hemes that Transport Electrons over Micrometers. Cell. 2019 Apr 4;177(2):361-369.e10. doi: 10.1016/j.cell.2019.03.029. PMID:30951668 doi:http://dx.doi.org/10.1016/j.cell.2019.03.029
  2. 2.0 2.1 Filman DJ, Marino SF, Ward JE, Yang L, Mester Z, Bullitt E, Lovley DR, Strauss M. Cryo-EM reveals the structural basis of long-range electron transport in a cytochrome-based bacterial nanowire. Commun Biol. 2019 Jun 19;2(1):219. doi: 10.1038/s42003-019-0448-9. PMID:31925024 doi:http://dx.doi.org/10.1038/s42003-019-0448-9
  3. Lovley DR, Walker DJF. Geobacter Protein Nanowires. Front Microbiol. 2019 Sep 24;10:2078. doi: 10.3389/fmicb.2019.02078. eCollection , 2019. PMID:31608018 doi:http://dx.doi.org/10.3389/fmicb.2019.02078
  4. 4.0 4.1 4.2 4.3 4.4 Pace CN, Grimsley GR, Scholtz JM. Protein ionizable groups: pK values and their contribution to protein stability and solubility. J Biol Chem. 2009 May 15;284(20):13285-9. doi: 10.1074/jbc.R800080200. Epub 2009 , Jan 21. PMID:19164280 doi:http://dx.doi.org/10.1074/jbc.R800080200
  5. 5.0 5.1 Kajander T, Kahn PC, Passila SH, Cohen DC, Lehtio L, Adolfsen W, Warwicker J, Schell U, Goldman A. Buried charged surface in proteins. Structure. 2000 Nov 15;8(11):1203-14. PMID:11080642

Proteopedia Page Contributors and Editors (what is this?)

Eric Martz

Personal tools