|
|
Line 3: |
Line 3: |
| <StructureSection load='6u9a' size='340' side='right'caption='[[6u9a]], [[Resolution|resolution]] 1.65Å' scene=''> | | <StructureSection load='6u9a' size='340' side='right'caption='[[6u9a]], [[Resolution|resolution]] 1.65Å' scene=''> |
| == Structural highlights == | | == Structural highlights == |
- | <table><tr><td colspan='2'>[[6u9a]] is a 1 chain structure with sequence from [http://en.wikipedia.org/wiki/Human Human]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=6U9A OCA]. For a <b>guided tour on the structure components</b> use [http://oca.weizmann.ac.il/oca-docs/fgij/fg.htm?mol=6U9A FirstGlance]. <br> | + | <table><tr><td colspan='2'>[[6u9a]] is a 1 chain structure with sequence from [https://en.wikipedia.org/wiki/Homo_sapiens Homo sapiens]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=6U9A OCA]. For a <b>guided tour on the structure components</b> use [https://proteopedia.org/fgij/fg.htm?mol=6U9A FirstGlance]. <br> |
- | </td></tr><tr id='ligand'><td class="sblockLbl"><b>[[Ligand|Ligands:]]</b></td><td class="sblockDat"><scene name='pdbligand=Q2A:3-{[(3S)-3-({6-amino-8-[(6-iodo-2H-1,3-benzodioxol-5-yl)sulfanyl]-9H-purin-9-yl}methyl)piperidin-1-yl]methyl}benzene-1-sulfonyl+fluoride'>Q2A</scene></td></tr> | + | </td></tr><tr id='method'><td class="sblockLbl"><b>[[Empirical_models|Method:]]</b></td><td class="sblockDat" id="methodDat">X-ray diffraction, [[Resolution|Resolution]] 1.65Å</td></tr> |
- | <tr id='related'><td class="sblockLbl"><b>[[Related_structure|Related:]]</b></td><td class="sblockDat">[[6u99|6u99]], [[6u98|6u98]]</td></tr>
| + | <tr id='ligand'><td class="sblockLbl"><b>[[Ligand|Ligands:]]</b></td><td class="sblockDat" id="ligandDat"><scene name='pdbligand=Q2A:3-{[(3S)-3-({6-amino-8-[(6-iodo-2H-1,3-benzodioxol-5-yl)sulfanyl]-9H-purin-9-yl}methyl)piperidin-1-yl]methyl}benzene-1-sulfonyl+fluoride'>Q2A</scene></td></tr> |
- | <tr id='gene'><td class="sblockLbl"><b>[[Gene|Gene:]]</b></td><td class="sblockDat">HSP90AA1, HSP90A, HSPC1, HSPCA ([http://www.ncbi.nlm.nih.gov/Taxonomy/Browser/wwwtax.cgi?mode=Info&srchmode=5&id=9606 HUMAN])</td></tr>
| + | <tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[https://proteopedia.org/fgij/fg.htm?mol=6u9a FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=6u9a OCA], [https://pdbe.org/6u9a PDBe], [https://www.rcsb.org/pdb/explore.do?structureId=6u9a RCSB], [https://www.ebi.ac.uk/pdbsum/6u9a PDBsum], [https://prosat.h-its.org/prosat/prosatexe?pdbcode=6u9a ProSAT]</span></td></tr> |
- | <tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[http://oca.weizmann.ac.il/oca-docs/fgij/fg.htm?mol=6u9a FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=6u9a OCA], [http://pdbe.org/6u9a PDBe], [http://www.rcsb.org/pdb/explore.do?structureId=6u9a RCSB], [http://www.ebi.ac.uk/pdbsum/6u9a PDBsum], [http://prosat.h-its.org/prosat/prosatexe?pdbcode=6u9a ProSAT]</span></td></tr> | + | |
| </table> | | </table> |
| == Function == | | == Function == |
- | [[http://www.uniprot.org/uniprot/HS90A_HUMAN HS90A_HUMAN]] Molecular chaperone that promotes the maturation, structural maintenance and proper regulation of specific target proteins involved for instance in cell cycle control and signal transduction. Undergoes a functional cycle that is linked to its ATPase activity. This cycle probably induces conformational changes in the client proteins, thereby causing their activation. Interacts dynamically with various co-chaperones that modulate its substrate recognition, ATPase cycle and chaperone function.<ref>PMID:15937123</ref> <ref>PMID:11274138</ref> | + | [https://www.uniprot.org/uniprot/HS90A_HUMAN HS90A_HUMAN] Molecular chaperone that promotes the maturation, structural maintenance and proper regulation of specific target proteins involved for instance in cell cycle control and signal transduction. Undergoes a functional cycle that is linked to its ATPase activity. This cycle probably induces conformational changes in the client proteins, thereby causing their activation. Interacts dynamically with various co-chaperones that modulate its substrate recognition, ATPase cycle and chaperone function.<ref>PMID:15937123</ref> <ref>PMID:11274138</ref> |
| <div style="background-color:#fffaf0;"> | | <div style="background-color:#fffaf0;"> |
| == Publication Abstract from PubMed == | | == Publication Abstract from PubMed == |
Line 20: |
Line 19: |
| </div> | | </div> |
| <div class="pdbe-citations 6u9a" style="background-color:#fffaf0;"></div> | | <div class="pdbe-citations 6u9a" style="background-color:#fffaf0;"></div> |
| + | |
| + | ==See Also== |
| + | *[[Heat Shock Protein structures|Heat Shock Protein structures]] |
| == References == | | == References == |
| <references/> | | <references/> |
| __TOC__ | | __TOC__ |
| </StructureSection> | | </StructureSection> |
- | [[Category: Human]] | + | [[Category: Homo sapiens]] |
| [[Category: Large Structures]] | | [[Category: Large Structures]] |
- | [[Category: Cuesta, A]] | + | [[Category: Cuesta A]] |
- | [[Category: Taunton, J]] | + | [[Category: Taunton J]] |
- | [[Category: Wan, X]] | + | [[Category: Wan X]] |
- | [[Category: Chaperone]]
| + | |
- | [[Category: Chaperone-inhibitor complex]]
| + | |
- | [[Category: Inhibitor]]
| + | |
- | [[Category: Lysine-targeted inhibitor]]
| + | |
| Structural highlights
Function
HS90A_HUMAN Molecular chaperone that promotes the maturation, structural maintenance and proper regulation of specific target proteins involved for instance in cell cycle control and signal transduction. Undergoes a functional cycle that is linked to its ATPase activity. This cycle probably induces conformational changes in the client proteins, thereby causing their activation. Interacts dynamically with various co-chaperones that modulate its substrate recognition, ATPase cycle and chaperone function.[1] [2]
Publication Abstract from PubMed
Targeted covalent modification of surface-exposed lysines is challenging due to their low intrinsic reactivity and high prevalence throughout the proteome. Strategies for optimizing the rate of covalent bond formation by a reversibly bound inhibitor (kinact) typically involve increasing the reactivity of the electrophile, which increases the risk of off-target modification. Here, we employ an alternative approach for increasing kinact of a lysine-targeted covalent Hsp90 inhibitor, independent of the reversible binding affinity (Ki) or the intrinsic electrophilicity. Starting with a noncovalent ligand, we appended a chiral, conformationally constrained linker, which orients an arylsulfonyl fluoride to react rapidly and enantioselectively with Lys58 on the surface of Hsp90. Biochemical experiments and high-resolution crystal structures of covalent and noncovalent ligand/Hsp90 complexes provide mechanistic insights into the role of ligand conformation in the observed enantioselectivity. Finally, we demonstrate selective covalent targeting of cellular Hsp90, which results in a prolonged heat shock response despite concomitant degradation of the covalent ligand/Hsp90 complex. Our work highlights the potential of engineering ligand conformational constraints to dramatically accelerate covalent modification of a distal, poorly nucleophilic lysine on the surface of a protein target.
Ligand Conformational Bias Drives Enantioselective Modification of a Surface-Exposed Lysine on Hsp90.,Cuesta A, Wan X, Burlingame AL, Taunton J J Am Chem Soc. 2020 Feb 3. doi: 10.1021/jacs.9b09684. PMID:32009391[3]
From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.
See Also
References
- ↑ Martinez-Ruiz A, Villanueva L, Gonzalez de Orduna C, Lopez-Ferrer D, Higueras MA, Tarin C, Rodriguez-Crespo I, Vazquez J, Lamas S. S-nitrosylation of Hsp90 promotes the inhibition of its ATPase and endothelial nitric oxide synthase regulatory activities. Proc Natl Acad Sci U S A. 2005 Jun 14;102(24):8525-30. Epub 2005 Jun 3. PMID:15937123 doi:10.1073/pnas.0407294102
- ↑ Forsythe HL, Jarvis JL, Turner JW, Elmore LW, Holt SE. Stable association of hsp90 and p23, but Not hsp70, with active human telomerase. J Biol Chem. 2001 May 11;276(19):15571-4. Epub 2001 Mar 23. PMID:11274138 doi:10.1074/jbc.C100055200
- ↑ Cuesta A, Wan X, Burlingame AL, Taunton J. Ligand Conformational Bias Drives Enantioselective Modification of a Surface-Exposed Lysine on Hsp90. J Am Chem Soc. 2020 Feb 3. doi: 10.1021/jacs.9b09684. PMID:32009391 doi:http://dx.doi.org/10.1021/jacs.9b09684
|