|
|
(3 intermediate revisions not shown.) |
Line 3: |
Line 3: |
| <SX load='3jah' size='340' side='right' viewer='molstar' caption='[[3jah]], [[Resolution|resolution]] 3.45Å' scene=''> | | <SX load='3jah' size='340' side='right' viewer='molstar' caption='[[3jah]], [[Resolution|resolution]] 3.45Å' scene=''> |
| == Structural highlights == | | == Structural highlights == |
- | <table><tr><td colspan='2'>[[3jah]] is a 87 chain structure with sequence from [http://en.wikipedia.org/wiki/European_rabbit European rabbit] and [http://en.wikipedia.org/wiki/Oryctolagus_cuniculus Oryctolagus cuniculus]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=3JAH OCA]. For a <b>guided tour on the structure components</b> use [http://oca.weizmann.ac.il/oca-docs/fgij/fg.htm?mol=3JAH FirstGlance]. <br> | + | <table><tr><td colspan='2'>[[3jah]] is a 10 chain structure with sequence from [https://en.wikipedia.org/wiki/Oryctolagus_cuniculus Oryctolagus cuniculus]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=3JAH OCA]. For a <b>guided tour on the structure components</b> use [https://proteopedia.org/fgij/fg.htm?mol=3JAH FirstGlance]. <br> |
- | </td></tr><tr id='ligand'><td class="sblockLbl"><b>[[Ligand|Ligands:]]</b></td><td class="sblockDat"><scene name='pdbligand=ADP:ADENOSINE-5-DIPHOSPHATE'>ADP</scene>, <scene name='pdbligand=MG:MAGNESIUM+ION'>MG</scene>, <scene name='pdbligand=SF4:IRON/SULFUR+CLUSTER'>SF4</scene>, <scene name='pdbligand=ZN:ZINC+ION'>ZN</scene></td></tr> | + | </td></tr><tr id='method'><td class="sblockLbl"><b>[[Empirical_models|Method:]]</b></td><td class="sblockDat" id="methodDat">Electron Microscopy, [[Resolution|Resolution]] 3.45Å</td></tr> |
- | <tr id='related'><td class="sblockLbl"><b>[[Related_structure|Related:]]</b></td><td class="sblockDat">[[3jag|3jag]], [[3jai|3jai]]</td></tr> | + | <tr id='ligand'><td class="sblockLbl"><b>[[Ligand|Ligands:]]</b></td><td class="sblockDat" id="ligandDat"><scene name='pdbligand=ADP:ADENOSINE-5-DIPHOSPHATE'>ADP</scene>, <scene name='pdbligand=MG:MAGNESIUM+ION'>MG</scene>, <scene name='pdbligand=ZN:ZINC+ION'>ZN</scene></td></tr> |
- | <tr id='gene'><td class="sblockLbl"><b>[[Gene|Gene:]]</b></td><td class="sblockDat">eRF1 ([http://www.ncbi.nlm.nih.gov/Taxonomy/Browser/wwwtax.cgi?mode=Info&srchmode=5&id=9986 European rabbit])</td></tr> | + | <tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[https://proteopedia.org/fgij/fg.htm?mol=3jah FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=3jah OCA], [https://pdbe.org/3jah PDBe], [https://www.rcsb.org/pdb/explore.do?structureId=3jah RCSB], [https://www.ebi.ac.uk/pdbsum/3jah PDBsum], [https://prosat.h-its.org/prosat/prosatexe?pdbcode=3jah ProSAT]</span></td></tr> |
- | <tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[http://oca.weizmann.ac.il/oca-docs/fgij/fg.htm?mol=3jah FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=3jah OCA], [http://pdbe.org/3jah PDBe], [http://www.rcsb.org/pdb/explore.do?structureId=3jah RCSB], [http://www.ebi.ac.uk/pdbsum/3jah PDBsum], [http://prosat.h-its.org/prosat/prosatexe?pdbcode=3jah ProSAT]</span></td></tr> | + | |
| </table> | | </table> |
| == Function == | | == Function == |
- | [[http://www.uniprot.org/uniprot/U3KPD5_RABIT U3KPD5_RABIT]] Binds to the 23S rRNA.[RuleBase:RU000576] [[http://www.uniprot.org/uniprot/ERF1_HUMAN ERF1_HUMAN]] Directs the termination of nascent peptide synthesis (translation) in response to the termination codons UAA, UAG and UGA. Component of the transient SURF complex which recruits UPF1 to stalled ribosomes in the context of nonsense-mediated decay (NMD) of mRNAs containing premature stop codons.<ref>PMID:7990965</ref> [[http://www.uniprot.org/uniprot/G1SS70_RABIT G1SS70_RABIT]] May play a role during erythropoiesis through regulation of transcription factor DDIT3.[HAMAP-Rule:MF_03122] | + | [https://www.uniprot.org/uniprot/RL10_RABIT RL10_RABIT] Component of the large ribosomal subunit (PubMed:26245381, PubMed:27863242, PubMed:30517857). Plays a role in the formation of actively translating ribosomes (By similarity). May play a role in the embryonic brain development (By similarity).[UniProtKB:P27635]<ref>PMID:26245381</ref> <ref>PMID:27863242</ref> <ref>PMID:30517857</ref> |
| <div style="background-color:#fffaf0;"> | | <div style="background-color:#fffaf0;"> |
| == Publication Abstract from PubMed == | | == Publication Abstract from PubMed == |
Line 27: |
Line 26: |
| __TOC__ | | __TOC__ |
| </SX> | | </SX> |
- | [[Category: European rabbit]] | |
| [[Category: Large Structures]] | | [[Category: Large Structures]] |
| [[Category: Oryctolagus cuniculus]] | | [[Category: Oryctolagus cuniculus]] |
- | [[Category: Brown, A]] | + | [[Category: Brown A]] |
- | [[Category: Hegde, R S]] | + | [[Category: Hegde RS]] |
- | [[Category: Murray, J]] | + | [[Category: Murray J]] |
- | [[Category: Ramakrishnan, V]] | + | [[Category: Ramakrishnan V]] |
- | [[Category: Shao, S]] | + | [[Category: Shao S]] |
- | [[Category: Abce1]]
| + | |
- | [[Category: Erf1]]
| + | |
- | [[Category: Ribosome]]
| + | |
- | [[Category: Termination]]
| + | |
| Structural highlights
Function
RL10_RABIT Component of the large ribosomal subunit (PubMed:26245381, PubMed:27863242, PubMed:30517857). Plays a role in the formation of actively translating ribosomes (By similarity). May play a role in the embryonic brain development (By similarity).[UniProtKB:P27635][1] [2] [3]
Publication Abstract from PubMed
Termination of protein synthesis occurs when a translating ribosome encounters one of three universally conserved stop codons: UAA, UAG or UGA. Release factors recognize stop codons in the ribosomal A-site to mediate release of the nascent chain and recycling of the ribosome. Bacteria decode stop codons using two separate release factors with differing specificities for the second and third bases. By contrast, eukaryotes rely on an evolutionarily unrelated omnipotent release factor (eRF1) to recognize all three stop codons. The molecular basis of eRF1 discrimination for stop codons over sense codons is not known. Here we present cryo-electron microscopy (cryo-EM) structures at 3.5-3.8 A resolution of mammalian ribosomal complexes containing eRF1 interacting with each of the three stop codons in the A-site. Binding of eRF1 flips nucleotide A1825 of 18S ribosomal RNA so that it stacks on the second and third stop codon bases. This configuration pulls the fourth position base into the A-site, where it is stabilized by stacking against G626 of 18S rRNA. Thus, eRF1 exploits two rRNA nucleotides also used during transfer RNA selection to drive messenger RNA compaction. In this compacted mRNA conformation, stop codons are favoured by a hydrogen-bonding network formed between rRNA and essential eRF1 residues that constrains the identity of the bases. These results provide a molecular framework for eukaryotic stop codon recognition and have implications for future studies on the mechanisms of canonical and premature translation termination.
Structural basis for stop codon recognition in eukaryotes.,Brown A, Shao S, Murray J, Hegde RS, Ramakrishnan V Nature. 2015 Aug 27;524(7566):493-6. doi: 10.1038/nature14896. Epub 2015 Aug 5. PMID:26245381[4]
From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.
See Also
References
- ↑ Brown A, Shao S, Murray J, Hegde RS, Ramakrishnan V. Structural basis for stop codon recognition in eukaryotes. Nature. 2015 Aug 27;524(7566):493-6. doi: 10.1038/nature14896. Epub 2015 Aug 5. PMID:26245381 doi:http://dx.doi.org/10.1038/nature14896
- ↑ Shao S, Murray J, Brown A, Taunton J, Ramakrishnan V, Hegde RS. Decoding Mammalian Ribosome-mRNA States by Translational GTPase Complexes. Cell. 2016 Nov 17;167(5):1229-1240.e15. doi: 10.1016/j.cell.2016.10.046. PMID:27863242 doi:http://dx.doi.org/10.1016/j.cell.2016.10.046
- ↑ Flis J, Holm M, Rundlet EJ, Loerke J, Hilal T, Dabrowski M, Burger J, Mielke T, Blanchard SC, Spahn CMT, Budkevich TV. tRNA Translocation by the Eukaryotic 80S Ribosome and the Impact of GTP Hydrolysis. Cell Rep. 2018 Dec 4;25(10):2676-2688.e7. doi: 10.1016/j.celrep.2018.11.040. PMID:30517857 doi:http://dx.doi.org/10.1016/j.celrep.2018.11.040
- ↑ Brown A, Shao S, Murray J, Hegde RS, Ramakrishnan V. Structural basis for stop codon recognition in eukaryotes. Nature. 2015 Aug 27;524(7566):493-6. doi: 10.1038/nature14896. Epub 2015 Aug 5. PMID:26245381 doi:http://dx.doi.org/10.1038/nature14896
|