|
|
(2 intermediate revisions not shown.) |
Line 3: |
Line 3: |
| <SX load='4aau' size='340' side='right' viewer='molstar' caption='[[4aau]], [[Resolution|resolution]] 8.50Å' scene=''> | | <SX load='4aau' size='340' side='right' viewer='molstar' caption='[[4aau]], [[Resolution|resolution]] 8.50Å' scene=''> |
| == Structural highlights == | | == Structural highlights == |
- | <table><tr><td colspan='2'>[[4aau]] is a 14 chain structure with sequence from [http://en.wikipedia.org/wiki/"bacillus_coli"_migula_1895 "bacillus coli" migula 1895]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=4AAU OCA]. For a <b>guided tour on the structure components</b> use [http://oca.weizmann.ac.il/oca-docs/fgij/fg.htm?mol=4AAU FirstGlance]. <br> | + | <table><tr><td colspan='2'>[[4aau]] is a 14 chain structure with sequence from [https://en.wikipedia.org/wiki/Escherichia_coli Escherichia coli]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=4AAU OCA]. For a <b>guided tour on the structure components</b> use [https://proteopedia.org/fgij/fg.htm?mol=4AAU FirstGlance]. <br> |
- | </td></tr><tr id='ligand'><td class="sblockLbl"><b>[[Ligand|Ligands:]]</b></td><td class="sblockDat"><scene name='pdbligand=ATP:ADENOSINE-5-TRIPHOSPHATE'>ATP</scene>, <scene name='pdbligand=MG:MAGNESIUM+ION'>MG</scene>, <scene name='pdbligand=PO4:PHOSPHATE+ION'>PO4</scene></td></tr> | + | </td></tr><tr id='method'><td class="sblockLbl"><b>[[Empirical_models|Method:]]</b></td><td class="sblockDat" id="methodDat">Electron Microscopy, [[Resolution|Resolution]] 8.5Å</td></tr> |
- | <tr id='related'><td class="sblockLbl"><b>[[Related_structure|Related:]]</b></td><td class="sblockDat">[[2yey|2yey]], [[1gr5|1gr5]], [[1sx4|1sx4]], [[1ss8|1ss8]], [[4aas|4aas]], [[1aon|1aon]], [[1grl|1grl]], [[1oel|1oel]], [[1pcq|1pcq]], [[1dkd|1dkd]], [[2c7c|2c7c]], [[1svt|1svt]], [[1fy9|1fy9]], [[1pf9|1pf9]], [[1kid|1kid]], [[1fya|1fya]], [[1j4z|1j4z]], [[1gru|1gru]], [[1jon|1jon]], [[1dk7|1dk7]], [[2c7d|2c7d]], [[4aaq|4aaq]], [[1kp8|1kp8]], [[1la1|1la1]], [[1mnf|1mnf]], [[2cgt|2cgt]], [[1kpo|1kpo]], [[1xck|1xck]], [[1sx3|1sx3]], [[2c7e|2c7e]], [[4ab3|4ab3]], [[4ab2|4ab2]], [[4aar|4aar]]</td></tr>
| + | <tr id='ligand'><td class="sblockLbl"><b>[[Ligand|Ligands:]]</b></td><td class="sblockDat" id="ligandDat"><scene name='pdbligand=ATP:ADENOSINE-5-TRIPHOSPHATE'>ATP</scene>, <scene name='pdbligand=MG:MAGNESIUM+ION'>MG</scene>, <scene name='pdbligand=PO4:PHOSPHATE+ION'>PO4</scene></td></tr> |
- | <tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[http://oca.weizmann.ac.il/oca-docs/fgij/fg.htm?mol=4aau FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=4aau OCA], [http://pdbe.org/4aau PDBe], [http://www.rcsb.org/pdb/explore.do?structureId=4aau RCSB], [http://www.ebi.ac.uk/pdbsum/4aau PDBsum], [http://prosat.h-its.org/prosat/prosatexe?pdbcode=4aau ProSAT]</span></td></tr> | + | <tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[https://proteopedia.org/fgij/fg.htm?mol=4aau FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=4aau OCA], [https://pdbe.org/4aau PDBe], [https://www.rcsb.org/pdb/explore.do?structureId=4aau RCSB], [https://www.ebi.ac.uk/pdbsum/4aau PDBsum], [https://prosat.h-its.org/prosat/prosatexe?pdbcode=4aau ProSAT]</span></td></tr> |
| </table> | | </table> |
| == Function == | | == Function == |
- | [[http://www.uniprot.org/uniprot/CH60_ECOLI CH60_ECOLI]] Prevents misfolding and promotes the refolding and proper assembly of unfolded polypeptides generated under stress conditions.[HAMAP-Rule:MF_00600] Essential for the growth of the bacteria and the assembly of several bacteriophages. Also plays a role in coupling between replication of the F plasmid and cell division of the cell.[HAMAP-Rule:MF_00600] | + | [https://www.uniprot.org/uniprot/CH60_ECOLI CH60_ECOLI] Prevents misfolding and promotes the refolding and proper assembly of unfolded polypeptides generated under stress conditions.[HAMAP-Rule:MF_00600] Essential for the growth of the bacteria and the assembly of several bacteriophages. Also plays a role in coupling between replication of the F plasmid and cell division of the cell.[HAMAP-Rule:MF_00600] |
| <div style="background-color:#fffaf0;"> | | <div style="background-color:#fffaf0;"> |
| == Publication Abstract from PubMed == | | == Publication Abstract from PubMed == |
Line 26: |
Line 26: |
| __TOC__ | | __TOC__ |
| </SX> | | </SX> |
- | [[Category: Bacillus coli migula 1895]] | + | [[Category: Escherichia coli]] |
| [[Category: Large Structures]] | | [[Category: Large Structures]] |
- | [[Category: Clare, D K]] | + | [[Category: Clare DK]] |
- | [[Category: Farr, G W]] | + | [[Category: Farr GW]] |
- | [[Category: Horwich, A L]] | + | [[Category: Horwich AL]] |
- | [[Category: Quispe, J]] | + | [[Category: Quispe J]] |
- | [[Category: Saibil, H R]] | + | [[Category: Saibil HR]] |
- | [[Category: Stagg, S]] | + | [[Category: Stagg S]] |
- | [[Category: Topf, M]] | + | [[Category: Topf M]] |
- | [[Category: Vasishtan, D]] | + | [[Category: Vasishtan D]] |
- | [[Category: Chaperone]]
| + | |
| Structural highlights
Function
CH60_ECOLI Prevents misfolding and promotes the refolding and proper assembly of unfolded polypeptides generated under stress conditions.[HAMAP-Rule:MF_00600] Essential for the growth of the bacteria and the assembly of several bacteriophages. Also plays a role in coupling between replication of the F plasmid and cell division of the cell.[HAMAP-Rule:MF_00600]
Publication Abstract from PubMed
The chaperonin GroEL assists the folding of nascent or stress-denatured polypeptides by actions of binding and encapsulation. ATP binding initiates a series of conformational changes triggering the association of the cochaperonin GroES, followed by further large movements that eject the substrate polypeptide from hydrophobic binding sites into a GroES-capped, hydrophilic folding chamber. We used cryo-electron microscopy, statistical analysis, and flexible fitting to resolve a set of distinct GroEL-ATP conformations that can be ordered into a trajectory of domain rotation and elevation. The initial conformations are likely to be the ones that capture polypeptide substrate. Then the binding domains extend radially to separate from each other but maintain their binding surfaces facing the cavity, potentially exerting mechanical force upon kinetically trapped, misfolded substrates. The extended conformation also provides a potential docking site for GroES, to trigger the final, 100 degrees domain rotation constituting the "power stroke" that ejects substrate into the folding chamber.
ATP-triggered conformational changes delineate substrate-binding and -folding mechanics of the GroEL chaperonin.,Clare DK, Vasishtan D, Stagg S, Quispe J, Farr GW, Topf M, Horwich AL, Saibil HR Cell. 2012 Mar 30;149(1):113-23. Epub 2012 Mar 22. PMID:22445172[1]
From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.
See Also
References
- ↑ Clare DK, Vasishtan D, Stagg S, Quispe J, Farr GW, Topf M, Horwich AL, Saibil HR. ATP-triggered conformational changes delineate substrate-binding and -folding mechanics of the GroEL chaperonin. Cell. 2012 Mar 30;149(1):113-23. Epub 2012 Mar 22. PMID:22445172 doi:10.1016/j.cell.2012.02.047
|