|
|
(One intermediate revision not shown.) |
Line 3: |
Line 3: |
| <SX load='5mpp' size='340' side='right' viewer='molstar' caption='[[5mpp]], [[Resolution|resolution]] 3.94Å' scene=''> | | <SX load='5mpp' size='340' side='right' viewer='molstar' caption='[[5mpp]], [[Resolution|resolution]] 3.94Å' scene=''> |
| == Structural highlights == | | == Structural highlights == |
- | <table><tr><td colspan='2'>[[5mpp]] is a 60 chain structure with sequence from [http://en.wikipedia.org/wiki/"aquifex_aeolicus"_huber_and_stetter_2001 "aquifex aeolicus" huber and stetter 2001]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=5MPP OCA]. For a <b>guided tour on the structure components</b> use [http://oca.weizmann.ac.il/oca-docs/fgij/fg.htm?mol=5MPP FirstGlance]. <br> | + | <table><tr><td colspan='2'>[[5mpp]] is a 60 chain structure with sequence from [https://en.wikipedia.org/wiki/Aquifex_aeolicus Aquifex aeolicus]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=5MPP OCA]. For a <b>guided tour on the structure components</b> use [https://proteopedia.org/fgij/fg.htm?mol=5MPP FirstGlance]. <br> |
- | </td></tr><tr id='gene'><td class="sblockLbl"><b>[[Gene|Gene:]]</b></td><td class="sblockDat">ribH, aq_132 ([http://www.ncbi.nlm.nih.gov/Taxonomy/Browser/wwwtax.cgi?mode=Info&srchmode=5&id=63363 "Aquifex aeolicus" Huber and Stetter 2001])</td></tr> | + | </td></tr><tr id='method'><td class="sblockLbl"><b>[[Empirical_models|Method:]]</b></td><td class="sblockDat" id="methodDat">Electron Microscopy, [[Resolution|Resolution]] 3.94Å</td></tr> |
- | <tr id='activity'><td class="sblockLbl"><b>Activity:</b></td><td class="sblockDat"><span class='plainlinks'>[http://en.wikipedia.org/wiki/6,7-dimethyl-8-ribityllumazine_synthase 6,7-dimethyl-8-ribityllumazine synthase], with EC number [http://www.brenda-enzymes.info/php/result_flat.php4?ecno=2.5.1.78 2.5.1.78] </span></td></tr>
| + | <tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[https://proteopedia.org/fgij/fg.htm?mol=5mpp FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=5mpp OCA], [https://pdbe.org/5mpp PDBe], [https://www.rcsb.org/pdb/explore.do?structureId=5mpp RCSB], [https://www.ebi.ac.uk/pdbsum/5mpp PDBsum], [https://prosat.h-its.org/prosat/prosatexe?pdbcode=5mpp ProSAT]</span></td></tr> |
- | <tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[http://oca.weizmann.ac.il/oca-docs/fgij/fg.htm?mol=5mpp FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=5mpp OCA], [http://pdbe.org/5mpp PDBe], [http://www.rcsb.org/pdb/explore.do?structureId=5mpp RCSB], [http://www.ebi.ac.uk/pdbsum/5mpp PDBsum], [http://prosat.h-its.org/prosat/prosatexe?pdbcode=5mpp ProSAT]</span></td></tr> | + | |
| </table> | | </table> |
| == Function == | | == Function == |
- | [[http://www.uniprot.org/uniprot/RISB_AQUAE RISB_AQUAE]] Catalyzes the formation of 6,7-dimethyl-8-ribityllumazine by condensation of 5-amino-6-(D-ribitylamino)uracil with 3,4-dihydroxy-2-butanone 4-phosphate. This is the penultimate step in the biosynthesis of riboflavin.<ref>PMID:12603336</ref> <ref>PMID:11237620</ref> | + | [https://www.uniprot.org/uniprot/RISB_AQUAE RISB_AQUAE] Catalyzes the formation of 6,7-dimethyl-8-ribityllumazine by condensation of 5-amino-6-(D-ribitylamino)uracil with 3,4-dihydroxy-2-butanone 4-phosphate. This is the penultimate step in the biosynthesis of riboflavin.<ref>PMID:12603336</ref> <ref>PMID:11237620</ref> |
| <div style="background-color:#fffaf0;"> | | <div style="background-color:#fffaf0;"> |
| == Publication Abstract from PubMed == | | == Publication Abstract from PubMed == |
Line 23: |
Line 22: |
| __TOC__ | | __TOC__ |
| </SX> | | </SX> |
- | [[Category: Aquifex aeolicus huber and stetter 2001]] | + | [[Category: Aquifex aeolicus]] |
- | [[Category: 6,7-dimethyl-8-ribityllumazine synthase]]
| + | |
| [[Category: Large Structures]] | | [[Category: Large Structures]] |
- | [[Category: Ban, N]] | + | [[Category: Ban N]] |
- | [[Category: Boehringer, D]] | + | [[Category: Boehringer D]] |
- | [[Category: Hilvert, D]] | + | [[Category: Hilvert D]] |
- | [[Category: Leibundgut, M]] | + | [[Category: Leibundgut M]] |
- | [[Category: Sasaki, E]] | + | [[Category: Sasaki E]] |
- | [[Category: Cryo-em]]
| + | |
- | [[Category: Dodecahedron]]
| + | |
- | [[Category: Lumazine synthase]]
| + | |
- | [[Category: Protein cage]]
| + | |
- | [[Category: Transferase]]
| + | |
| Structural highlights
Function
RISB_AQUAE Catalyzes the formation of 6,7-dimethyl-8-ribityllumazine by condensation of 5-amino-6-(D-ribitylamino)uracil with 3,4-dihydroxy-2-butanone 4-phosphate. This is the penultimate step in the biosynthesis of riboflavin.[1] [2]
Publication Abstract from PubMed
Proteins that self-assemble into regular shell-like polyhedra are useful, both in nature and in the laboratory, as molecular containers. Here we describe cryo-electron microscopy (EM) structures of two versatile encapsulation systems that exploit engineered electrostatic interactions for cargo loading. We show that increasing the number of negative charges on the lumenal surface of lumazine synthase, a protein that naturally assembles into a approximately 1-MDa dodecahedron composed of 12 pentamers, induces stepwise expansion of the native protein shell, giving rise to thermostable approximately 3-MDa and approximately 6-MDa assemblies containing 180 and 360 subunits, respectively. Remarkably, these expanded particles assume unprecedented tetrahedrally and icosahedrally symmetric structures constructed entirely from pentameric units. Large keyhole-shaped pores in the shell, not present in the wild-type capsid, enable diffusion-limited encapsulation of complementarily charged guests. The structures of these supercharged assemblies demonstrate how programmed electrostatic effects can be effectively harnessed to tailor the architecture and properties of protein cages.
Structure and assembly of scalable porous protein cages.,Sasaki E, Bohringer D, van de Waterbeemd M, Leibundgut M, Zschoche R, Heck AJ, Ban N, Hilvert D Nat Commun. 2017 Mar 10;8:14663. doi: 10.1038/ncomms14663. PMID:28281548[3]
From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.
References
- ↑ Haase I, Mortl S, Kohler P, Bacher A, Fischer M. Biosynthesis of riboflavin in archaea. 6,7-dimethyl-8-ribityllumazine synthase of Methanococcus jannaschii. Eur J Biochem. 2003 Mar;270(5):1025-32. PMID:12603336
- ↑ Zhang X, Meining W, Fischer M, Bacher A, Ladenstein R. X-ray structure analysis and crystallographic refinement of lumazine synthase from the hyperthermophile Aquifex aeolicus at 1.6 A resolution: determinants of thermostability revealed from structural comparisons. J Mol Biol. 2001 Mar 9;306(5):1099-114. PMID:11237620 doi:10.1006/jmbi.2000.4435
- ↑ Sasaki E, Bohringer D, van de Waterbeemd M, Leibundgut M, Zschoche R, Heck AJ, Ban N, Hilvert D. Structure and assembly of scalable porous protein cages. Nat Commun. 2017 Mar 10;8:14663. doi: 10.1038/ncomms14663. PMID:28281548 doi:http://dx.doi.org/10.1038/ncomms14663
|