5tby

From Proteopedia

(Difference between revisions)
Jump to: navigation, search
Current revision (09:25, 23 October 2024) (edit) (undo)
 
(2 intermediate revisions not shown.)
Line 3: Line 3:
<SX load='5tby' size='340' side='right' viewer='molstar' caption='[[5tby]], [[Resolution|resolution]] 20.00&Aring;' scene=''>
<SX load='5tby' size='340' side='right' viewer='molstar' caption='[[5tby]], [[Resolution|resolution]] 20.00&Aring;' scene=''>
== Structural highlights ==
== Structural highlights ==
-
<table><tr><td colspan='2'>[[5tby]] is a 6 chain structure with sequence from [http://en.wikipedia.org/wiki/Homo_sapiens Homo sapiens]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=5TBY OCA]. For a <b>guided tour on the structure components</b> use [http://oca.weizmann.ac.il/oca-docs/fgij/fg.htm?mol=5TBY FirstGlance]. <br>
+
<table><tr><td colspan='2'>[[5tby]] is a 6 chain structure with sequence from [https://en.wikipedia.org/wiki/Homo_sapiens Homo sapiens]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=5TBY OCA]. For a <b>guided tour on the structure components</b> use [https://proteopedia.org/fgij/fg.htm?mol=5TBY FirstGlance]. <br>
-
</td></tr><tr id='related'><td class="sblockLbl"><b>[[Related_structure|Related:]]</b></td><td class="sblockDat">[[3jbh|3jbh]]</td></tr>
+
</td></tr><tr id='method'><td class="sblockLbl"><b>[[Empirical_models|Method:]]</b></td><td class="sblockDat" id="methodDat">Electron Microscopy, [[Resolution|Resolution]] 20&#8491;</td></tr>
-
<tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[http://oca.weizmann.ac.il/oca-docs/fgij/fg.htm?mol=5tby FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=5tby OCA], [http://pdbe.org/5tby PDBe], [http://www.rcsb.org/pdb/explore.do?structureId=5tby RCSB], [http://www.ebi.ac.uk/pdbsum/5tby PDBsum], [http://prosat.h-its.org/prosat/prosatexe?pdbcode=5tby ProSAT]</span></td></tr>
+
<tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[https://proteopedia.org/fgij/fg.htm?mol=5tby FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=5tby OCA], [https://pdbe.org/5tby PDBe], [https://www.rcsb.org/pdb/explore.do?structureId=5tby RCSB], [https://www.ebi.ac.uk/pdbsum/5tby PDBsum], [https://prosat.h-its.org/prosat/prosatexe?pdbcode=5tby ProSAT]</span></td></tr>
</table>
</table>
== Disease ==
== Disease ==
-
[[http://www.uniprot.org/uniprot/MYH7_HUMAN MYH7_HUMAN]] Defects in MYH7 are the cause of familial hypertrophic cardiomyopathy type 1 (CMH1) [MIM:[http://omim.org/entry/192600 192600]]. Familial hypertrophic cardiomyopathy is a hereditary heart disorder characterized by ventricular hypertrophy, which is usually asymmetric and often involves the interventricular septum. The symptoms include dyspnea, syncope, collapse, palpitations, and chest pain. They can be readily provoked by exercise. The disorder has inter- and intrafamilial variability ranging from benign to malignant forms with high risk of cardiac failure and sudden cardiac death.<ref>PMID:1975517</ref> <ref>PMID:1417858</ref> <ref>PMID:1638703</ref> <ref>PMID:1552912</ref> <ref>PMID:8250038</ref> <ref>PMID:8343162</ref> <ref>PMID:8435239</ref> <ref>PMID:8268932</ref> <ref>PMID:8254035</ref> <ref>PMID:8483915</ref> <ref>PMID:7848441</ref> <ref>PMID:7874131</ref> <ref>PMID:8282798</ref> <ref>PMID:7581410</ref> <ref>PMID:7731997</ref> <ref>PMID:8655135</ref> <ref>PMID:8899546</ref> <ref>PMID:10065021</ref> <ref>PMID:9544842</ref> <ref>PMID:9829907</ref> <ref>PMID:9822100</ref> <ref>PMID:10521296</ref> <ref>PMID:10563488</ref> <ref>PMID:10329202</ref> <ref>PMID:10679957</ref> <ref>PMID:10862102</ref> <ref>PMID:11113006</ref> <ref>PMID:11214007</ref> <ref>PMID:11733062</ref> <ref>PMID:11424919</ref> <ref>PMID:11133230</ref> <ref>PMID:12081993</ref> <ref>PMID:11861413</ref> <ref>PMID:11968089</ref> <ref>PMID:12951062</ref> <ref>PMID:12566107</ref> <ref>PMID:12707239</ref> <ref>PMID:12974739</ref> <ref>PMID:12820698</ref> <ref>PMID:12975413</ref> <ref>PMID:12590187</ref> <ref>PMID:12818575</ref> <ref>PMID:15358028</ref> <ref>PMID:15563892</ref> <ref>PMID:15483641</ref> <ref>PMID:15858117</ref> <ref>PMID:16199542</ref> <ref>PMID:15856146</ref> <ref>PMID:16650083</ref> <ref>PMID:16938236</ref> <ref>PMID:17372140</ref> <ref>PMID:18403758</ref> Defects in MYH7 are the cause of myopathy myosin storage (MYOMS) [MIM:[http://omim.org/entry/608358 608358]]. In this disorder, muscle biopsy shows type 1 fiber predominance and increased interstitial fat and connective tissue. Inclusion bodies consisting of the beta cardiac myosin heavy chain are present in the majority of type 1 fibers, but not in type 2 fibers.<ref>PMID:14520662</ref> <ref>PMID:15136674</ref> <ref>PMID:17336526</ref> Defects in MYH7 are the cause of scapuloperoneal myopathy MYH7-related (SPMM) [MIM:[http://omim.org/entry/181430 181430]]; also known as scapuloperoneal syndrome myopathic type. SPMM is a progressive muscular atrophia beginning in the lower legs and affecting the shoulder region earlier and more severely than distal arm.<ref>PMID:17336526</ref> Defects in MYH7 are a cause of cardiomyopathy dilated type 1S (CMD1S) [MIM:[http://omim.org/entry/613426 613426]]. Dilated cardiomyopathy is a disorder characterized by ventricular dilation and impaired systolic function, resulting in congestive heart failure and arrhythmia. Patients are at risk of premature death.<ref>PMID:11106718</ref> <ref>PMID:12379228</ref> <ref>PMID:15769782</ref> <ref>PMID:21846512</ref> Defects in MYH7 are the cause of myopathy distal type 1 (MPD1) [MIM:[http://omim.org/entry/160500 160500]]. MPD1 is a muscular disorder characterized by early-onset selective weakness of the great toe and ankle dorsiflexors, followed by weakness of the finger extensors. Mild proximal weakness occasionally develops years later after the onset of the disease.<ref>PMID:15322983</ref> <ref>PMID:17548557</ref> [[http://www.uniprot.org/uniprot/MLRV_HUMAN MLRV_HUMAN]] Congenital fiber-type disproportion myopathy;Familial isolated hypertrophic cardiomyopathy. The disease is caused by mutations affecting the gene represented in this entry. [[http://www.uniprot.org/uniprot/MYL3_HUMAN MYL3_HUMAN]] Familial isolated hypertrophic cardiomyopathy. The disease is caused by mutations affecting the gene represented in this entry.
+
[https://www.uniprot.org/uniprot/MYH7_HUMAN MYH7_HUMAN] Defects in MYH7 are the cause of familial hypertrophic cardiomyopathy type 1 (CMH1) [MIM:[https://omim.org/entry/192600 192600]. Familial hypertrophic cardiomyopathy is a hereditary heart disorder characterized by ventricular hypertrophy, which is usually asymmetric and often involves the interventricular septum. The symptoms include dyspnea, syncope, collapse, palpitations, and chest pain. They can be readily provoked by exercise. The disorder has inter- and intrafamilial variability ranging from benign to malignant forms with high risk of cardiac failure and sudden cardiac death.<ref>PMID:1975517</ref> <ref>PMID:1417858</ref> <ref>PMID:1638703</ref> <ref>PMID:1552912</ref> <ref>PMID:8250038</ref> <ref>PMID:8343162</ref> <ref>PMID:8435239</ref> <ref>PMID:8268932</ref> <ref>PMID:8254035</ref> <ref>PMID:8483915</ref> <ref>PMID:7848441</ref> <ref>PMID:7874131</ref> <ref>PMID:8282798</ref> <ref>PMID:7581410</ref> <ref>PMID:7731997</ref> <ref>PMID:8655135</ref> <ref>PMID:8899546</ref> <ref>PMID:10065021</ref> <ref>PMID:9544842</ref> <ref>PMID:9829907</ref> <ref>PMID:9822100</ref> <ref>PMID:10521296</ref> <ref>PMID:10563488</ref> <ref>PMID:10329202</ref> <ref>PMID:10679957</ref> <ref>PMID:10862102</ref> <ref>PMID:11113006</ref> <ref>PMID:11214007</ref> <ref>PMID:11733062</ref> <ref>PMID:11424919</ref> <ref>PMID:11133230</ref> <ref>PMID:12081993</ref> <ref>PMID:11861413</ref> <ref>PMID:11968089</ref> <ref>PMID:12951062</ref> <ref>PMID:12566107</ref> <ref>PMID:12707239</ref> <ref>PMID:12974739</ref> <ref>PMID:12820698</ref> <ref>PMID:12975413</ref> <ref>PMID:12590187</ref> <ref>PMID:12818575</ref> <ref>PMID:15358028</ref> <ref>PMID:15563892</ref> <ref>PMID:15483641</ref> <ref>PMID:15858117</ref> <ref>PMID:16199542</ref> <ref>PMID:15856146</ref> <ref>PMID:16650083</ref> <ref>PMID:16938236</ref> <ref>PMID:17372140</ref> <ref>PMID:18403758</ref> Defects in MYH7 are the cause of myopathy myosin storage (MYOMS) [MIM:[https://omim.org/entry/608358 608358]. In this disorder, muscle biopsy shows type 1 fiber predominance and increased interstitial fat and connective tissue. Inclusion bodies consisting of the beta cardiac myosin heavy chain are present in the majority of type 1 fibers, but not in type 2 fibers.<ref>PMID:14520662</ref> <ref>PMID:15136674</ref> <ref>PMID:17336526</ref> Defects in MYH7 are the cause of scapuloperoneal myopathy MYH7-related (SPMM) [MIM:[https://omim.org/entry/181430 181430]; also known as scapuloperoneal syndrome myopathic type. SPMM is a progressive muscular atrophia beginning in the lower legs and affecting the shoulder region earlier and more severely than distal arm.<ref>PMID:17336526</ref> Defects in MYH7 are a cause of cardiomyopathy dilated type 1S (CMD1S) [MIM:[https://omim.org/entry/613426 613426]. Dilated cardiomyopathy is a disorder characterized by ventricular dilation and impaired systolic function, resulting in congestive heart failure and arrhythmia. Patients are at risk of premature death.<ref>PMID:11106718</ref> <ref>PMID:12379228</ref> <ref>PMID:15769782</ref> <ref>PMID:21846512</ref> Defects in MYH7 are the cause of myopathy distal type 1 (MPD1) [MIM:[https://omim.org/entry/160500 160500]. MPD1 is a muscular disorder characterized by early-onset selective weakness of the great toe and ankle dorsiflexors, followed by weakness of the finger extensors. Mild proximal weakness occasionally develops years later after the onset of the disease.<ref>PMID:15322983</ref> <ref>PMID:17548557</ref>
== Function ==
== Function ==
-
[[http://www.uniprot.org/uniprot/MYH7_HUMAN MYH7_HUMAN]] Muscle contraction. [[http://www.uniprot.org/uniprot/MLRV_HUMAN MLRV_HUMAN]] Contractile protein that plays a role in heart development and function (By similarity). Following phosphorylation, plays a role in cross-bridge cycling kinetics and cardiac muscle contraction by increasing myosin lever arm stiffness and promoting myosin head diffusion; as a consequence of the increase in maximum contraction force and calcium sensitivity of contraction force. These events altogether slow down myosin kinetics and prolong duty cycle resulting in accumulated myosins being cooperatively recruited to actin binding sites to sustain thin filament activation as a means to fine-tune myofilament calcium sensitivity to force (By similarity). During cardiogenesis plays an early role in cardiac contractility by promoting cardiac myofibril assembly (By similarity).[UniProtKB:P08733][UniProtKB:P51667] [[http://www.uniprot.org/uniprot/MYL3_HUMAN MYL3_HUMAN]] Regulatory light chain of myosin. Does not bind calcium.
+
[https://www.uniprot.org/uniprot/MYH7_HUMAN MYH7_HUMAN] Muscle contraction.
<div style="background-color:#fffaf0;">
<div style="background-color:#fffaf0;">
== Publication Abstract from PubMed ==
== Publication Abstract from PubMed ==
-
Tarantula striated muscle is an outstanding system for understanding the molecular organization of myosin filaments. Three-dimensional reconstruction based on cryo-electron microscopy images and single-particle image processing revealed that, in a relaxed state, myosin molecules undergo intramolecular head-head interactions, explaining why head activity switches off. The filament model obtained by rigidly docking a chicken smooth muscle myosin structure to the reconstruction was improved by flexibly fitting an atomic model built by mixing structures from different species to a tilt-corrected 2-nm three-dimensional map of frozen-hydrated tarantula thick filament. We used heavy and light chain sequences from tarantula myosin to build a single-species homology model of two heavy meromyosin interacting-heads motifs (IHMs). The flexibly fitted model includes previously missing loops and shows five intramolecular and five intermolecular interactions that keep the IHM in a compact off structure, forming four helical tracks of IHMs around the backbone. The residues involved in these interactions are oppositely charged, and their sequence conservation suggests that IHM is present across animal species. The new model, PDB 3JBH, explains the structural origin of the ATP turnover rates detected in relaxed tarantula muscle by ascribing the very slow rate to docked unphosphorylated heads, the slow rate to phosphorylated docked heads, and the fast rate to phosphorylated undocked heads. The conservation of intramolecular interactions across animal species and the presence of IHM in bilaterians suggest that a super-relaxed state should be maintained, as it plays a role in saving ATP in skeletal, cardiac, and smooth muscles.
+
Cardiac beta-myosin variants cause hypertrophic (HCM) or dilated (DCM) cardiomyopathy by disrupting sarcomere contraction and relaxation. The locations of variants on isolated myosin head structures predict contractility effects but not the prominent relaxation and energetic deficits that characterize HCM. During relaxation, pairs of myosins form interacting-heads motif (IHM) structures that with other sarcomere proteins establish an energy-saving, super-relaxed (SRX) state. Using a human beta-cardiac myosin IHM quasi-atomic model, we defined interactions sites between adjacent myosin heads and associated protein partners, and then analyzed rare variants from 6112 HCM and 1315 DCM patients and 33,370 ExAC controls. HCM variants, 72% that changed electrostatic charges, disproportionately altered IHM interaction residues (expected 23%; HCM 54%, p=2.6x10-19; DCM 26%, p=0.66; controls 20%, p=0.23). HCM variant locations predict impaired IHM formation and stability, and attenuation of the SRX state - accounting for altered contractility, reduced diastolic relaxation, and increased energy consumption, that fully characterizes HCM pathogenesis.
-
Conserved Intramolecular Interactions Maintain Myosin Interacting-Heads Motifs Explaining Tarantula Muscle Super-Relaxed State Structural Basis.,Alamo L, Qi D, Wriggers W, Pinto A, Zhu J, Bilbao A, Gillilan RE, Hu S, Padron R J Mol Biol. 2016 Feb 2. pii: S0022-2836(16)00082-6. doi:, 10.1016/j.jmb.2016.01.027. PMID:26851071<ref>PMID:26851071</ref>
+
Effects of myosin variants on interacting-heads motif explain distinct hypertrophic and dilated cardiomyopathy phenotypes.,Alamo L, Ware JS, Pinto A, Gillilan RE, Seidman JG, Seidman CE, Padron R Elife. 2017 Jun 13;6. pii: e24634. doi: 10.7554/eLife.24634. PMID:28606303<ref>PMID:28606303</ref>
From MEDLINE&reg;/PubMed&reg;, a database of the U.S. National Library of Medicine.<br>
From MEDLINE&reg;/PubMed&reg;, a database of the U.S. National Library of Medicine.<br>
Line 29: Line 29:
[[Category: Homo sapiens]]
[[Category: Homo sapiens]]
[[Category: Large Structures]]
[[Category: Large Structures]]
-
[[Category: ALAMO, L]]
+
[[Category: ALAMO L]]
-
[[Category: GILLILAN, R E]]
+
[[Category: GILLILAN RE]]
-
[[Category: PADRON, R]]
+
[[Category: PADRON R]]
-
[[Category: PINTO, A]]
+
[[Category: PINTO A]]
-
[[Category: SEIDMAN, C E]]
+
[[Category: SEIDMAN CE]]
-
[[Category: SEIDMAN, J G]]
+
[[Category: SEIDMAN JG]]
-
[[Category: WARE, J S]]
+
[[Category: WARE JS]]
-
[[Category: Contractile protein]]
+
-
[[Category: Contractile protein hypertrophic or dilated cardiomyopathy beta-cardiac myosin ii myosin interacting-heads motif]]
+

Current revision

HUMAN BETA CARDIAC HEAVY MEROMYOSIN INTERACTING-HEADS MOTIF OBTAINED BY HOMOLOGY MODELING (USING SWISS-MODEL) OF HUMAN SEQUENCE FROM APHONOPELMA HOMOLOGY MODEL (PDB-3JBH), RIGIDLY FITTED TO HUMAN BETA-CARDIAC NEGATIVELY STAINED THICK FILAMENT 3D-RECONSTRUCTION (EMD-2240)

5tby, resolution 20.00Å

Proteopedia Page Contributors and Editors (what is this?)

OCA

Personal tools