|
|
(2 intermediate revisions not shown.) |
Line 3: |
Line 3: |
| <SX load='6c1h' size='340' side='right' viewer='molstar' caption='[[6c1h]], [[Resolution|resolution]] 3.90Å' scene=''> | | <SX load='6c1h' size='340' side='right' viewer='molstar' caption='[[6c1h]], [[Resolution|resolution]] 3.90Å' scene=''> |
| == Structural highlights == | | == Structural highlights == |
- | <table><tr><td colspan='2'>[[6c1h]] is a 7 chain structure with sequence from [http://en.wikipedia.org/wiki/Oryctolagus_cuniculus Oryctolagus cuniculus], [http://en.wikipedia.org/wiki/Rattus_norvegicus Rattus norvegicus] and [http://en.wikipedia.org/wiki/Unidentified Unidentified]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=6C1H OCA]. For a <b>guided tour on the structure components</b> use [http://oca.weizmann.ac.il/oca-docs/fgij/fg.htm?mol=6C1H FirstGlance]. <br> | + | <table><tr><td colspan='2'>[[6c1h]] is a 7 chain structure with sequence from [https://en.wikipedia.org/wiki/Oryctolagus_cuniculus Oryctolagus cuniculus], [https://en.wikipedia.org/wiki/Rattus_norvegicus Rattus norvegicus] and [https://en.wikipedia.org/wiki/Unidentified Unidentified]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=6C1H OCA]. For a <b>guided tour on the structure components</b> use [https://proteopedia.org/fgij/fg.htm?mol=6C1H FirstGlance]. <br> |
- | </td></tr><tr id='ligand'><td class="sblockLbl"><b>[[Ligand|Ligands:]]</b></td><td class="sblockDat"><scene name='pdbligand=ADP:ADENOSINE-5-DIPHOSPHATE'>ADP</scene>, <scene name='pdbligand=MG:MAGNESIUM+ION'>MG</scene></td></tr> | + | </td></tr><tr id='method'><td class="sblockLbl"><b>[[Empirical_models|Method:]]</b></td><td class="sblockDat" id="methodDat">Electron Microscopy, [[Resolution|Resolution]] 3.9Å</td></tr> |
- | <tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[http://oca.weizmann.ac.il/oca-docs/fgij/fg.htm?mol=6c1h FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=6c1h OCA], [http://pdbe.org/6c1h PDBe], [http://www.rcsb.org/pdb/explore.do?structureId=6c1h RCSB], [http://www.ebi.ac.uk/pdbsum/6c1h PDBsum], [http://prosat.h-its.org/prosat/prosatexe?pdbcode=6c1h ProSAT]</span></td></tr> | + | <tr id='ligand'><td class="sblockLbl"><b>[[Ligand|Ligands:]]</b></td><td class="sblockDat" id="ligandDat"><scene name='pdbligand=ADP:ADENOSINE-5-DIPHOSPHATE'>ADP</scene>, <scene name='pdbligand=MG:MAGNESIUM+ION'>MG</scene></td></tr> |
| + | <tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[https://proteopedia.org/fgij/fg.htm?mol=6c1h FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=6c1h OCA], [https://pdbe.org/6c1h PDBe], [https://www.rcsb.org/pdb/explore.do?structureId=6c1h RCSB], [https://www.ebi.ac.uk/pdbsum/6c1h PDBsum], [https://prosat.h-its.org/prosat/prosatexe?pdbcode=6c1h ProSAT]</span></td></tr> |
| </table> | | </table> |
| == Function == | | == Function == |
- | [[http://www.uniprot.org/uniprot/ACTS_RABIT ACTS_RABIT]] Actins are highly conserved proteins that are involved in various types of cell motility and are ubiquitously expressed in all eukaryotic cells. [[http://www.uniprot.org/uniprot/MYO1B_RAT MYO1B_RAT]] Motor protein that may participate in process critical to neuronal development and function such as cell migration, neurite outgrowth and vesicular transport (By similarity). | + | [https://www.uniprot.org/uniprot/ACTS_RABIT ACTS_RABIT] Actins are highly conserved proteins that are involved in various types of cell motility and are ubiquitously expressed in all eukaryotic cells. |
| <div style="background-color:#fffaf0;"> | | <div style="background-color:#fffaf0;"> |
| == Publication Abstract from PubMed == | | == Publication Abstract from PubMed == |
Line 31: |
Line 32: |
| [[Category: Rattus norvegicus]] | | [[Category: Rattus norvegicus]] |
| [[Category: Unidentified]] | | [[Category: Unidentified]] |
- | [[Category: Dominguez, R]] | + | [[Category: Dominguez R]] |
- | [[Category: Huehn, A]] | + | [[Category: Huehn A]] |
- | [[Category: Liu, X]] | + | [[Category: Liu X]] |
- | [[Category: Mentes, A]] | + | [[Category: Mentes A]] |
- | [[Category: Ostap, E M]] | + | [[Category: Ostap EM]] |
- | [[Category: Shuman, H]] | + | [[Category: Shuman H]] |
- | [[Category: Sindelar, C V]] | + | [[Category: Sindelar CV]] |
- | [[Category: Zwolak, A]] | + | [[Category: Zwolak A]] |
- | [[Category: Cytoskeleton]]
| + | |
- | [[Category: Mechanobiology]]
| + | |
- | [[Category: Mechanochemistry]]
| + | |
- | [[Category: Molecular motor]]
| + | |
- | [[Category: Myosin-i]]
| + | |
- | [[Category: Structural biology]]
| + | |
- | [[Category: Structural protein]]
| + | |
| Structural highlights
Function
ACTS_RABIT Actins are highly conserved proteins that are involved in various types of cell motility and are ubiquitously expressed in all eukaryotic cells.
Publication Abstract from PubMed
Myosins adjust their power outputs in response to mechanical loads in an isoform-dependent manner, resulting in their ability to dynamically adapt to a range of motile challenges. Here, we reveal the structural basis for force-sensing based on near-atomic resolution structures of one rigor and two ADP-bound states of myosin-IB (myo1b) bound to actin, determined by cryo-electron microscopy. The two ADP-bound states are separated by a 25 degrees rotation of the lever. The lever of the first ADP state is rotated toward the pointed end of the actin filament and forms a previously unidentified interface with the N-terminal subdomain, which constitutes the upper half of the nucleotide-binding cleft. This pointed-end orientation of the lever blocks ADP release by preventing the N-terminal subdomain from the pivoting required to open the nucleotide binding site, thus revealing how myo1b is inhibited by mechanical loads that restrain lever rotation. The lever of the second ADP state adopts a rigor-like orientation, stabilized by class-specific elements of myo1b. We identify a role for this conformation as an intermediate in the ADP release pathway. Moreover, comparison of our structures with other myosins reveals structural diversity in the actomyosin binding site, and we reveal the high-resolution structure of actin-bound phalloidin, a potent stabilizer of filamentous actin. These results provide a framework to understand the spectrum of force-sensing capacities among the myosin superfamily.
High-resolution cryo-EM structures of actin-bound myosin states reveal the mechanism of myosin force sensing.,Mentes A, Huehn A, Liu X, Zwolak A, Dominguez R, Shuman H, Ostap EM, Sindelar CV Proc Natl Acad Sci U S A. 2018 Jan 22. pii: 1718316115. doi:, 10.1073/pnas.1718316115. PMID:29358376[1]
From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.
See Also
References
- ↑ Mentes A, Huehn A, Liu X, Zwolak A, Dominguez R, Shuman H, Ostap EM, Sindelar CV. High-resolution cryo-EM structures of actin-bound myosin states reveal the mechanism of myosin force sensing. Proc Natl Acad Sci U S A. 2018 Jan 22. pii: 1718316115. doi:, 10.1073/pnas.1718316115. PMID:29358376 doi:http://dx.doi.org/10.1073/pnas.1718316115
|