|
|
| (One intermediate revision not shown.) |
| Line 3: |
Line 3: |
| | <SX load='6cna' size='340' side='right' viewer='molstar' caption='[[6cna]], [[Resolution|resolution]] 4.60Å' scene=''> | | <SX load='6cna' size='340' side='right' viewer='molstar' caption='[[6cna]], [[Resolution|resolution]] 4.60Å' scene=''> |
| | == Structural highlights == | | == Structural highlights == |
| - | <table><tr><td colspan='2'>[[6cna]] is a 4 chain structure with sequence from [http://en.wikipedia.org/wiki/Buffalo_rat Buffalo rat]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=6CNA OCA]. For a <b>guided tour on the structure components</b> use [http://oca.weizmann.ac.il/oca-docs/fgij/fg.htm?mol=6CNA FirstGlance]. <br> | + | <table><tr><td colspan='2'>[[6cna]] is a 4 chain structure with sequence from [https://en.wikipedia.org/wiki/Rattus_norvegicus Rattus norvegicus]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=6CNA OCA]. For a <b>guided tour on the structure components</b> use [https://proteopedia.org/fgij/fg.htm?mol=6CNA FirstGlance]. <br> |
| - | </td></tr><tr id='ligand'><td class="sblockLbl"><b>[[Ligand|Ligands:]]</b></td><td class="sblockDat"><scene name='pdbligand=NAG:N-ACETYL-D-GLUCOSAMINE'>NAG</scene></td></tr> | + | </td></tr><tr id='method'><td class="sblockLbl"><b>[[Empirical_models|Method:]]</b></td><td class="sblockDat" id="methodDat">Electron Microscopy, [[Resolution|Resolution]] 4.6Å</td></tr> |
| - | <tr id='gene'><td class="sblockLbl"><b>[[Gene|Gene:]]</b></td><td class="sblockDat">Grin1, Nmdar1 ([http://www.ncbi.nlm.nih.gov/Taxonomy/Browser/wwwtax.cgi?mode=Info&srchmode=5&id=10116 Buffalo rat]), Grin2b ([http://www.ncbi.nlm.nih.gov/Taxonomy/Browser/wwwtax.cgi?mode=Info&srchmode=5&id=10116 Buffalo rat])</td></tr> | + | <tr id='ligand'><td class="sblockLbl"><b>[[Ligand|Ligands:]]</b></td><td class="sblockDat" id="ligandDat"><scene name='pdbligand=NAG:N-ACETYL-D-GLUCOSAMINE'>NAG</scene></td></tr> |
| - | <tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[http://oca.weizmann.ac.il/oca-docs/fgij/fg.htm?mol=6cna FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=6cna OCA], [http://pdbe.org/6cna PDBe], [http://www.rcsb.org/pdb/explore.do?structureId=6cna RCSB], [http://www.ebi.ac.uk/pdbsum/6cna PDBsum], [http://prosat.h-its.org/prosat/prosatexe?pdbcode=6cna ProSAT]</span></td></tr> | + | <tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[https://proteopedia.org/fgij/fg.htm?mol=6cna FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=6cna OCA], [https://pdbe.org/6cna PDBe], [https://www.rcsb.org/pdb/explore.do?structureId=6cna RCSB], [https://www.ebi.ac.uk/pdbsum/6cna PDBsum], [https://prosat.h-its.org/prosat/prosatexe?pdbcode=6cna ProSAT]</span></td></tr> |
| | </table> | | </table> |
| | == Function == | | == Function == |
| - | [[http://www.uniprot.org/uniprot/NMDZ1_RAT NMDZ1_RAT]] NMDA receptor subtype of glutamate-gated ion channels possesses high calcium permeability and voltage-dependent sensitivity to magnesium. Mediated by glycine. Plays a key role in synaptic plasticity, synaptogenesis, excitotoxicity, memory acquisition and learning. It mediates neuronal functions in glutamate neurotransmission. Is involved in the cell surface targeting of NMDA receptors.<ref>PMID:15996549</ref> [[http://www.uniprot.org/uniprot/NMDE2_RAT NMDE2_RAT]] NMDA receptor subtype of glutamate-gated ion channels with high calcium permeability and voltage-dependent sensitivity to magnesium. Mediated by glycine. In concert with DAPK1 at extrasynaptic sites, acts as a central mediator for stroke damage. Its phosphorylation at Ser-1303 by DAPK1 enhances synaptic NMDA receptor channel activity inducing injurious Ca2+ influx through them, resulting in an irreversible neuronal death (By similarity). | + | [https://www.uniprot.org/uniprot/NMDZ1_RAT NMDZ1_RAT] NMDA receptor subtype of glutamate-gated ion channels possesses high calcium permeability and voltage-dependent sensitivity to magnesium. Mediated by glycine. Plays a key role in synaptic plasticity, synaptogenesis, excitotoxicity, memory acquisition and learning. It mediates neuronal functions in glutamate neurotransmission. Is involved in the cell surface targeting of NMDA receptors.<ref>PMID:15996549</ref> |
| | <div style="background-color:#fffaf0;"> | | <div style="background-color:#fffaf0;"> |
| | == Publication Abstract from PubMed == | | == Publication Abstract from PubMed == |
| Line 26: |
Line 26: |
| | __TOC__ | | __TOC__ |
| | </SX> | | </SX> |
| - | [[Category: Buffalo rat]] | |
| | [[Category: Large Structures]] | | [[Category: Large Structures]] |
| - | [[Category: Furukawa, H]] | + | [[Category: Rattus norvegicus]] |
| - | [[Category: Grant, T]] | + | [[Category: Furukawa H]] |
| - | [[Category: Grigorieff, N]] | + | [[Category: Grant T]] |
| - | [[Category: Membrane protein]] | + | [[Category: Grigorieff N]] |
| - | [[Category: Splicing variant]]
| + | |
| Structural highlights
Function
NMDZ1_RAT NMDA receptor subtype of glutamate-gated ion channels possesses high calcium permeability and voltage-dependent sensitivity to magnesium. Mediated by glycine. Plays a key role in synaptic plasticity, synaptogenesis, excitotoxicity, memory acquisition and learning. It mediates neuronal functions in glutamate neurotransmission. Is involved in the cell surface targeting of NMDA receptors.[1]
Publication Abstract from PubMed
Alternative gene splicing gives rise to N-methyl-D-aspartate (NMDA) receptor ion channels with defined functional properties and unique contributions to calcium signaling in a given chemical environment in the mammalian brain. Splice variants possessing the exon-5-encoded motif at the amino-terminal domain (ATD) of the GluN1 subunit are known to display robustly altered deactivation rates and pH sensitivity, but the underlying mechanism for this functional modification is largely unknown. Here, we show through cryoelectron microscopy (cryo-EM) that the presence of the exon 5 motif in GluN1 alters the local architecture of heterotetrameric GluN1-GluN2 NMDA receptors and creates contacts with the ligand-binding domains (LBDs) of the GluN1 and GluN2 subunits, which are absent in NMDA receptors lacking the exon 5 motif. The unique interactions established by the exon 5 motif are essential to the stability of the ATD/LBD and LBD/LBD interfaces that are critically involved in controlling proton sensitivity and deactivation.
Structural Mechanism of Functional Modulation by Gene Splicing in NMDA Receptors.,Regan MC, Grant T, McDaniel MJ, Karakas E, Zhang J, Traynelis SF, Grigorieff N, Furukawa H Neuron. 2018 May 2;98(3):521-529.e3. doi: 10.1016/j.neuron.2018.03.034. Epub 2018, Apr 12. PMID:29656875[2]
From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.
See Also
References
- ↑ Inanobe A, Furukawa H, Gouaux E. Mechanism of partial agonist action at the NR1 subunit of NMDA receptors. Neuron. 2005 Jul 7;47(1):71-84. PMID:15996549 doi:10.1016/j.neuron.2005.05.022
- ↑ Regan MC, Grant T, McDaniel MJ, Karakas E, Zhang J, Traynelis SF, Grigorieff N, Furukawa H. Structural Mechanism of Functional Modulation by Gene Splicing in NMDA Receptors. Neuron. 2018 May 2;98(3):521-529.e3. doi: 10.1016/j.neuron.2018.03.034. Epub 2018, Apr 12. PMID:29656875 doi:http://dx.doi.org/10.1016/j.neuron.2018.03.034
|