|
|
(2 intermediate revisions not shown.) |
Line 3: |
Line 3: |
| <SX load='6o0y' size='340' side='right' viewer='molstar' caption='[[6o0y]], [[Resolution|resolution]] 3.37Å' scene=''> | | <SX load='6o0y' size='340' side='right' viewer='molstar' caption='[[6o0y]], [[Resolution|resolution]] 3.37Å' scene=''> |
| == Structural highlights == | | == Structural highlights == |
- | <table><tr><td colspan='2'>[[6o0y]] is a 5 chain structure with sequence from [http://en.wikipedia.org/wiki/"micrococcus_scarlatinae"_klein_1884 "micrococcus scarlatinae" klein 1884]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=6O0Y OCA]. For a <b>guided tour on the structure components</b> use [http://oca.weizmann.ac.il/oca-docs/fgij/fg.htm?mol=6O0Y FirstGlance]. <br> | + | <table><tr><td colspan='2'>[[6o0y]] is a 5 chain structure with sequence from [https://en.wikipedia.org/wiki/Streptococcus_pyogenes Streptococcus pyogenes] and [https://en.wikipedia.org/wiki/Synthetic_construct Synthetic construct]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=6O0Y OCA]. For a <b>guided tour on the structure components</b> use [https://proteopedia.org/fgij/fg.htm?mol=6O0Y FirstGlance]. <br> |
- | </td></tr><tr id='gene'><td class="sblockLbl"><b>[[Gene|Gene:]]</b></td><td class="sblockDat">cas9, csn1, SPy_1046 ([http://www.ncbi.nlm.nih.gov/Taxonomy/Browser/wwwtax.cgi?mode=Info&srchmode=5&id=1314 "Micrococcus scarlatinae" Klein 1884])</td></tr> | + | </td></tr><tr id='method'><td class="sblockLbl"><b>[[Empirical_models|Method:]]</b></td><td class="sblockDat" id="methodDat">Electron Microscopy, [[Resolution|Resolution]] 3.37Å</td></tr> |
- | <tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[http://oca.weizmann.ac.il/oca-docs/fgij/fg.htm?mol=6o0y FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=6o0y OCA], [http://pdbe.org/6o0y PDBe], [http://www.rcsb.org/pdb/explore.do?structureId=6o0y RCSB], [http://www.ebi.ac.uk/pdbsum/6o0y PDBsum], [http://prosat.h-its.org/prosat/prosatexe?pdbcode=6o0y ProSAT]</span></td></tr> | + | <tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[https://proteopedia.org/fgij/fg.htm?mol=6o0y FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=6o0y OCA], [https://pdbe.org/6o0y PDBe], [https://www.rcsb.org/pdb/explore.do?structureId=6o0y RCSB], [https://www.ebi.ac.uk/pdbsum/6o0y PDBsum], [https://prosat.h-its.org/prosat/prosatexe?pdbcode=6o0y ProSAT]</span></td></tr> |
| </table> | | </table> |
| == Function == | | == Function == |
- | [[http://www.uniprot.org/uniprot/CAS9_STRP1 CAS9_STRP1]] CRISPR (clustered regularly interspaced short palindromic repeat) is an adaptive immune system that provides protection against mobile genetic elements (viruses, transposable elements and conjugative plasmids). CRISPR clusters contain spacers, sequences complementary to antecedent mobile elements, and target invading nucleic acids. CRISPR clusters are transcribed and processed into CRISPR RNA (crRNA) (Probable). In type II CRISPR systems correct processing of pre-crRNA requires a trans-encoded small RNA (tracrRNA), endogenous ribonuclease 3 (rnc) and this protein. The tracrRNA serves as a guide for ribonuclease 3-aided processing of pre-crRNA. Subsequently Cas9/crRNA/tracrRNA endonucleolytically cleaves linear or circular dsDNA target complementary to the spacer. The target strand not complementary to crRNA is first cut endonucleolytically, then trimmed by 3'-5' exonucleolytically. DNA-binding requires protein and both RNA species. Cas9 probably recognizes a short motif in the CRISPR repeat sequences (the PAM or protospacer adjacent motif) to help distinguish self versus nonself.<ref>PMID:21455174</ref> <ref>PMID:22745249</ref> | + | [https://www.uniprot.org/uniprot/CAS9_STRP1 CAS9_STRP1] CRISPR (clustered regularly interspaced short palindromic repeat) is an adaptive immune system that provides protection against mobile genetic elements (viruses, transposable elements and conjugative plasmids). CRISPR clusters contain spacers, sequences complementary to antecedent mobile elements, and target invading nucleic acids. CRISPR clusters are transcribed and processed into CRISPR RNA (crRNA) (Probable). In type II CRISPR systems correct processing of pre-crRNA requires a trans-encoded small RNA (tracrRNA), endogenous ribonuclease 3 (rnc) and this protein. The tracrRNA serves as a guide for ribonuclease 3-aided processing of pre-crRNA. Subsequently Cas9/crRNA/tracrRNA endonucleolytically cleaves linear or circular dsDNA target complementary to the spacer. The target strand not complementary to crRNA is first cut endonucleolytically, then trimmed by 3'-5' exonucleolytically. DNA-binding requires protein and both RNA species. Cas9 probably recognizes a short motif in the CRISPR repeat sequences (the PAM or protospacer adjacent motif) to help distinguish self versus nonself.<ref>PMID:21455174</ref> <ref>PMID:22745249</ref> |
| <div style="background-color:#fffaf0;"> | | <div style="background-color:#fffaf0;"> |
| == Publication Abstract from PubMed == | | == Publication Abstract from PubMed == |
Line 18: |
Line 18: |
| </div> | | </div> |
| <div class="pdbe-citations 6o0y" style="background-color:#fffaf0;"></div> | | <div class="pdbe-citations 6o0y" style="background-color:#fffaf0;"></div> |
| + | |
| + | ==See Also== |
| + | *[[Endonuclease 3D structures|Endonuclease 3D structures]] |
| == References == | | == References == |
| <references/> | | <references/> |
| __TOC__ | | __TOC__ |
| </SX> | | </SX> |
- | [[Category: Micrococcus scarlatinae klein 1884]] | |
| [[Category: Large Structures]] | | [[Category: Large Structures]] |
- | [[Category: Chittori, S]] | + | [[Category: Streptococcus pyogenes]] |
- | [[Category: Clarke, R]] | + | [[Category: Synthetic construct]] |
- | [[Category: Merk, A]] | + | [[Category: Chittori S]] |
- | [[Category: Merrill, B J]] | + | [[Category: Clarke R]] |
- | [[Category: Puppala, A K]] | + | [[Category: Merk A]] |
- | [[Category: Simonovic, M]] | + | [[Category: Merrill BJ]] |
- | [[Category: Subramaniam, S]] | + | [[Category: Puppala AK]] |
- | [[Category: Zhu, X]] | + | [[Category: Simonovic M]] |
- | [[Category: Cas9]] | + | [[Category: Subramaniam S]] |
- | [[Category: Crispr]] | + | [[Category: Zhu X]] |
- | [[Category: Genome editing]]
| + | |
- | [[Category: Hydrolase]]
| + | |
- | [[Category: Hydrolase-rna-dna complex]]
| + | |
- | [[Category: Nuclease]]
| + | |
| Structural highlights
Function
CAS9_STRP1 CRISPR (clustered regularly interspaced short palindromic repeat) is an adaptive immune system that provides protection against mobile genetic elements (viruses, transposable elements and conjugative plasmids). CRISPR clusters contain spacers, sequences complementary to antecedent mobile elements, and target invading nucleic acids. CRISPR clusters are transcribed and processed into CRISPR RNA (crRNA) (Probable). In type II CRISPR systems correct processing of pre-crRNA requires a trans-encoded small RNA (tracrRNA), endogenous ribonuclease 3 (rnc) and this protein. The tracrRNA serves as a guide for ribonuclease 3-aided processing of pre-crRNA. Subsequently Cas9/crRNA/tracrRNA endonucleolytically cleaves linear or circular dsDNA target complementary to the spacer. The target strand not complementary to crRNA is first cut endonucleolytically, then trimmed by 3'-5' exonucleolytically. DNA-binding requires protein and both RNA species. Cas9 probably recognizes a short motif in the CRISPR repeat sequences (the PAM or protospacer adjacent motif) to help distinguish self versus nonself.[1] [2]
Publication Abstract from PubMed
The RNA-guided Cas9 endonuclease from Streptococcus pyogenes is a single-turnover enzyme that displays a stable product state after double-stranded-DNA cleavage. Here, we present cryo-EM structures of precatalytic, postcatalytic and product states of the active Cas9-sgRNA-DNA complex in the presence of Mg(2+). In the precatalytic state, Cas9 adopts the 'checkpoint' conformation with the HNH nuclease domain positioned far away from the DNA. Transition to the postcatalytic state involves a dramatic ~34-A swing of the HNH domain and disorder of the REC2 recognition domain. The postcatalytic state captures the cleaved substrate bound to the catalytically competent HNH active site. In the product state, the HNH domain is disordered, REC2 returns to the precatalytic conformation, and additional interactions of REC3 and RuvC with nucleic acids are formed. The coupled domain motions and interactions between the enzyme and the RNA-DNA hybrid provide new insights into the mechanism of genome editing by Cas9.
Cryo-EM structures reveal coordinated domain motions that govern DNA cleavage by Cas9.,Zhu X, Clarke R, Puppala AK, Chittori S, Merk A, Merrill BJ, Simonovic M, Subramaniam S Nat Struct Mol Biol. 2019 Jul 8. pii: 10.1038/s41594-019-0258-2. doi:, 10.1038/s41594-019-0258-2. PMID:31285607[3]
From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.
See Also
References
- ↑ Deltcheva E, Chylinski K, Sharma CM, Gonzales K, Chao Y, Pirzada ZA, Eckert MR, Vogel J, Charpentier E. CRISPR RNA maturation by trans-encoded small RNA and host factor RNase III. Nature. 2011 Mar 31;471(7340):602-7. doi: 10.1038/nature09886. PMID:21455174 doi:http://dx.doi.org/10.1038/nature09886
- ↑ Jinek M, Chylinski K, Fonfara I, Hauer M, Doudna JA, Charpentier E. A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity. Science. 2012 Aug 17;337(6096):816-21. doi: 10.1126/science.1225829. Epub 2012, Jun 28. PMID:22745249 doi:http://dx.doi.org/10.1126/science.1225829
- ↑ Zhu X, Clarke R, Puppala AK, Chittori S, Merk A, Merrill BJ, Simonovic M, Subramaniam S. Cryo-EM structures reveal coordinated domain motions that govern DNA cleavage by Cas9. Nat Struct Mol Biol. 2019 Jul 8. pii: 10.1038/s41594-019-0258-2. doi:, 10.1038/s41594-019-0258-2. PMID:31285607 doi:http://dx.doi.org/10.1038/s41594-019-0258-2
|