|
|
(One intermediate revision not shown.) |
Line 3: |
Line 3: |
| <StructureSection load='2du2' size='340' side='right'caption='[[2du2]], [[Resolution|resolution]] 2.10Å' scene=''> | | <StructureSection load='2du2' size='340' side='right'caption='[[2du2]], [[Resolution|resolution]] 2.10Å' scene=''> |
| == Structural highlights == | | == Structural highlights == |
- | <table><tr><td colspan='2'>[[2du2]] is a 4 chain structure with sequence from [http://en.wikipedia.org/wiki/Aerococcus_viridans Aerococcus viridans]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=2DU2 OCA]. For a <b>guided tour on the structure components</b> use [http://oca.weizmann.ac.il/oca-docs/fgij/fg.htm?mol=2DU2 FirstGlance]. <br> | + | <table><tr><td colspan='2'>[[2du2]] is a 4 chain structure with sequence from [https://en.wikipedia.org/wiki/Aerococcus_viridans Aerococcus viridans]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=2DU2 OCA]. For a <b>guided tour on the structure components</b> use [https://proteopedia.org/fgij/fg.htm?mol=2DU2 FirstGlance]. <br> |
- | </td></tr><tr id='ligand'><td class="sblockLbl"><b>[[Ligand|Ligands:]]</b></td><td class="sblockDat"><scene name='pdbligand=FMN:FLAVIN+MONONUCLEOTIDE'>FMN</scene></td></tr> | + | </td></tr><tr id='method'><td class="sblockLbl"><b>[[Empirical_models|Method:]]</b></td><td class="sblockDat" id="methodDat">X-ray diffraction, [[Resolution|Resolution]] 2.1Å</td></tr> |
- | <tr id='related'><td class="sblockLbl"><b>[[Related_structure|Related:]]</b></td><td class="sblockDat">[[1gox|1gox]]</td></tr> | + | <tr id='ligand'><td class="sblockLbl"><b>[[Ligand|Ligands:]]</b></td><td class="sblockDat" id="ligandDat"><scene name='pdbligand=FMN:FLAVIN+MONONUCLEOTIDE'>FMN</scene></td></tr> |
- | <tr id='activity'><td class="sblockLbl"><b>Activity:</b></td><td class="sblockDat"><span class='plainlinks'>[http://en.wikipedia.org/wiki/Lactate_2-monooxygenase Lactate 2-monooxygenase], with EC number [http://www.brenda-enzymes.info/php/result_flat.php4?ecno=1.13.12.4 1.13.12.4] </span></td></tr>
| + | <tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[https://proteopedia.org/fgij/fg.htm?mol=2du2 FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=2du2 OCA], [https://pdbe.org/2du2 PDBe], [https://www.rcsb.org/pdb/explore.do?structureId=2du2 RCSB], [https://www.ebi.ac.uk/pdbsum/2du2 PDBsum], [https://prosat.h-its.org/prosat/prosatexe?pdbcode=2du2 ProSAT]</span></td></tr> |
- | <tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[http://oca.weizmann.ac.il/oca-docs/fgij/fg.htm?mol=2du2 FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=2du2 OCA], [http://pdbe.org/2du2 PDBe], [http://www.rcsb.org/pdb/explore.do?structureId=2du2 RCSB], [http://www.ebi.ac.uk/pdbsum/2du2 PDBsum], [http://prosat.h-its.org/prosat/prosatexe?pdbcode=2du2 ProSAT]</span></td></tr> | + | |
| </table> | | </table> |
| + | == Function == |
| + | [https://www.uniprot.org/uniprot/LOX_AERVM LOX_AERVM] Catalyzes the oxidation of (S)-lactate (L-lactate) to pyruvate, with a reduction of O2 to H2O2 (Ref.1, PubMed:27302031, PubMed:25423902, PubMed:2818595, PubMed:8589073, PubMed:26260739). Cannot oxidize D-lactate, glycolate, and D,L-2-hydroxybutanoate (PubMed:2818595). May be involved in the utilization of L-lactate as an energy source for growth (By similarity).[UniProtKB:O33655]<ref>PMID:25423902</ref> <ref>PMID:26260739</ref> <ref>PMID:27302031</ref> <ref>PMID:2818595</ref> <ref>PMID:8589073</ref> [UniProtKB:O33655] |
| == Evolutionary Conservation == | | == Evolutionary Conservation == |
| [[Image:Consurf_key_small.gif|200px|right]] | | [[Image:Consurf_key_small.gif|200px|right]] |
Line 28: |
Line 29: |
| </div> | | </div> |
| <div class="pdbe-citations 2du2" style="background-color:#fffaf0;"></div> | | <div class="pdbe-citations 2du2" style="background-color:#fffaf0;"></div> |
| + | |
| + | ==See Also== |
| + | *[[Monooxygenase 3D structures|Monooxygenase 3D structures]] |
| == References == | | == References == |
| <references/> | | <references/> |
Line 33: |
Line 37: |
| </StructureSection> | | </StructureSection> |
| [[Category: Aerococcus viridans]] | | [[Category: Aerococcus viridans]] |
- | [[Category: Lactate 2-monooxygenase]] | |
| [[Category: Large Structures]] | | [[Category: Large Structures]] |
- | [[Category: Morimoto, Y]] | + | [[Category: Morimoto Y]] |
- | [[Category: Fmn]]
| + | |
- | [[Category: Oxidoreductase]]
| + | |
- | [[Category: Tim barrel]]
| + | |
| Structural highlights
Function
LOX_AERVM Catalyzes the oxidation of (S)-lactate (L-lactate) to pyruvate, with a reduction of O2 to H2O2 (Ref.1, PubMed:27302031, PubMed:25423902, PubMed:2818595, PubMed:8589073, PubMed:26260739). Cannot oxidize D-lactate, glycolate, and D,L-2-hydroxybutanoate (PubMed:2818595). May be involved in the utilization of L-lactate as an energy source for growth (By similarity).[UniProtKB:O33655][1] [2] [3] [4] [5] [UniProtKB:O33655]
Evolutionary Conservation
Check, as determined by ConSurfDB. You may read the explanation of the method and the full data available from ConSurf.
Publication Abstract from PubMed
L-Lactate oxidase (LOX) from Aerococcus viridans is a member of the alpha-hydroxyacid-oxidase flavoenzyme family. We have determined the three-dimensional structure of LOX and revealed the mechanism of substrate recognition. The LOX monomer structure has a typical alpha(8)/beta(8) motif commonly found in other flavin family proteins. A related enzyme, glycolate oxidase, catalyzes the oxidation of glycolate rather than lactate. Comparison of the two enzyme structures highlights the importance of five residues around the FMN prosthetic group of LOX, which act synergistically to discriminate between the l/d configurations of lactate. X-ray crystallography of LOX gave a space group I422 of unit-cell parameters a=b=191.096A, c=194.497A and alpha=beta=gamma=90 degrees with four monomers per asymmetric unit. The four independent monomers display slight structural differences around the active site. Diffraction data were collected, under cryogenic conditions to 2.1A resolution at the synchrotron facilities in Japan.
The crystal structure of L-lactate oxidase from Aerococcus viridans at 2.1A resolution reveals the mechanism of strict substrate recognition.,Umena Y, Yorita K, Matsuoka T, Kita A, Fukui K, Morimoto Y Biochem Biophys Res Commun. 2006 Nov 17;350(2):249-56. Epub 2006 Sep 18. PMID:17007814[6]
From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.
See Also
References
- ↑ Stoisser T, Rainer D, Leitgeb S, Wilson DK, Nidetzky B. The Ala -to-Gly substitution in Aerococcus viridans L-lactate oxidase revisited: structural consequences at the catalytic site and effect on reactivity with O and other electron acceptors. FEBS J. 2014 Nov 25. doi: 10.1111/febs.13162. PMID:25423902 doi:http://dx.doi.org/10.1111/febs.13162
- ↑ Stoisser T, Klimacek M, Wilson DK, Nidetzky B. Speeding up the product release: a second-sphere contribution from Tyr191 to the reactivity of L-lactate oxidase revealed in crystallographic and kinetic studies of site-directed variants. FEBS J. 2015 Aug 11. doi: 10.1111/febs.13409. PMID:26260739 doi:http://dx.doi.org/10.1111/febs.13409
- ↑ Stoisser T, Brunsteiner M, Wilson DK, Nidetzky B. Conformational flexibility related to enzyme activity: evidence for a dynamic active-site gatekeeper function of Tyr(215) in Aerococcus viridans lactate oxidase. Sci Rep. 2016 Jun 15;6:27892. doi: 10.1038/srep27892. PMID:27302031 doi:http://dx.doi.org/10.1038/srep27892
- ↑ Duncan JD, Wallis JO, Azari MR. Purification and properties of Aerococcus viridans lactate oxidase. Biochem Biophys Res Commun. 1989 Oct 31;164(2):919-26. PMID:2818595 doi:10.1016/0006-291x(89)91546-5
- ↑ Maeda-Yorita K, Aki K, Sagai H, Misaki H, Massey V. L-lactate oxidase and L-lactate monooxygenase: mechanistic variations on a common structural theme. Biochimie. 1995;77(7-8):631-42. PMID:8589073 doi:10.1016/0300-9084(96)88178-8
- ↑ Umena Y, Yorita K, Matsuoka T, Kita A, Fukui K, Morimoto Y. The crystal structure of L-lactate oxidase from Aerococcus viridans at 2.1A resolution reveals the mechanism of strict substrate recognition. Biochem Biophys Res Commun. 2006 Nov 17;350(2):249-56. Epub 2006 Sep 18. PMID:17007814 doi:10.1016/j.bbrc.2006.09.025
|