|
|
| Line 3: |
Line 3: |
| | <StructureSection load='6cxs' size='340' side='right'caption='[[6cxs]], [[Resolution|resolution]] 2.80Å' scene=''> | | <StructureSection load='6cxs' size='340' side='right'caption='[[6cxs]], [[Resolution|resolution]] 2.80Å' scene=''> |
| | == Structural highlights == | | == Structural highlights == |
| - | <table><tr><td colspan='2'>[[6cxs]] is a 4 chain structure with sequence from [http://en.wikipedia.org/wiki/Clope Clope] and [http://en.wikipedia.org/wiki/Ecoli Ecoli]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=6CXS OCA]. For a <b>guided tour on the structure components</b> use [http://oca.weizmann.ac.il/oca-docs/fgij/fg.htm?mol=6CXS FirstGlance]. <br> | + | <table><tr><td colspan='2'>[[6cxs]] is a 4 chain structure with sequence from [https://en.wikipedia.org/wiki/Clostridium_perfringens_str._13 Clostridium perfringens str. 13] and [https://en.wikipedia.org/wiki/Escherichia_coli_K-12 Escherichia coli K-12]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=6CXS OCA]. For a <b>guided tour on the structure components</b> use [https://proteopedia.org/fgij/fg.htm?mol=6CXS FirstGlance]. <br> |
| - | </td></tr><tr id='ligand'><td class="sblockLbl"><b>[[Ligand|Ligands:]]</b></td><td class="sblockDat"><scene name='pdbligand=FJV:4-(8-(piperazin-1-yl)-1,2,3,4-tetrahydro-[1,2,3]triazino[4,5 4,5]thieno[2,3-c]isoquinolin-5-yl)morpholine'>FJV</scene></td></tr> | + | </td></tr><tr id='method'><td class="sblockLbl"><b>[[Empirical_models|Method:]]</b></td><td class="sblockDat" id="methodDat">X-ray diffraction, [[Resolution|Resolution]] 2.8Å</td></tr> |
| - | <tr id='related'><td class="sblockLbl"><b>[[Related_structure|Related:]]</b></td><td class="sblockDat">[[4jkm|4jkm]]</td></tr>
| + | <tr id='ligand'><td class="sblockLbl"><b>[[Ligand|Ligands:]]</b></td><td class="sblockDat" id="ligandDat"><scene name='pdbligand=FJV:4-(8-(piperazin-1-yl)-1,2,3,4-tetrahydro-[1,2,3]triazino[4,5 4,5]thieno[2,3-c]isoquinolin-5-yl)morpholine'>FJV</scene></td></tr> |
| - | <tr id='gene'><td class="sblockLbl"><b>[[Gene|Gene:]]</b></td><td class="sblockDat">bglR ([http://www.ncbi.nlm.nih.gov/Taxonomy/Browser/wwwtax.cgi?mode=Info&srchmode=5&id=195102 CLOPE]), malE, b4034, JW3994 ([http://www.ncbi.nlm.nih.gov/Taxonomy/Browser/wwwtax.cgi?mode=Info&srchmode=5&id=83333 ECOLI])</td></tr>
| + | <tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[https://proteopedia.org/fgij/fg.htm?mol=6cxs FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=6cxs OCA], [https://pdbe.org/6cxs PDBe], [https://www.rcsb.org/pdb/explore.do?structureId=6cxs RCSB], [https://www.ebi.ac.uk/pdbsum/6cxs PDBsum], [https://prosat.h-its.org/prosat/prosatexe?pdbcode=6cxs ProSAT]</span></td></tr> |
| - | <tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[http://oca.weizmann.ac.il/oca-docs/fgij/fg.htm?mol=6cxs FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=6cxs OCA], [http://pdbe.org/6cxs PDBe], [http://www.rcsb.org/pdb/explore.do?structureId=6cxs RCSB], [http://www.ebi.ac.uk/pdbsum/6cxs PDBsum], [http://prosat.h-its.org/prosat/prosatexe?pdbcode=6cxs ProSAT]</span></td></tr> | + | |
| | </table> | | </table> |
| | == Function == | | == Function == |
| - | [[http://www.uniprot.org/uniprot/MALE_ECOLI MALE_ECOLI]] Involved in the high-affinity maltose membrane transport system MalEFGK. Initial receptor for the active transport of and chemotaxis toward maltooligosaccharides. | + | [https://www.uniprot.org/uniprot/Q8XP19_CLOPE Q8XP19_CLOPE] |
| | <div style="background-color:#fffaf0;"> | | <div style="background-color:#fffaf0;"> |
| | == Publication Abstract from PubMed == | | == Publication Abstract from PubMed == |
| Line 28: |
Line 27: |
| | __TOC__ | | __TOC__ |
| | </StructureSection> | | </StructureSection> |
| - | [[Category: Clope]] | + | [[Category: Clostridium perfringens str. 13]] |
| - | [[Category: Ecoli]] | + | [[Category: Escherichia coli K-12]] |
| | [[Category: Large Structures]] | | [[Category: Large Structures]] |
| - | [[Category: Redinbo, M R]] | + | [[Category: Redinbo MR]] |
| - | [[Category: Wallace, B D]] | + | [[Category: Wallace BD]] |
| - | [[Category: Hydrolase-hydrolase inhibitor complex]]
| + | |
| - | [[Category: Hydrolase-hydrolase-inhibitor complex]]
| + | |
| Structural highlights
Function
Q8XP19_CLOPE
Publication Abstract from PubMed
Irinotecan treats a range of solid tumors, but its effectiveness is severely limited by gastrointestinal (GI) tract toxicity caused by gut bacterial beta-glucuronidase (GUS) enzymes. Targeted bacterial GUS inhibitors have been shown to partially alleviate irinotecan-induced GI tract damage and resultant diarrhea in mice. Here, we unravel the mechanistic basis for GI protection by gut microbial GUS inhibitors using in vivo models. We use in vitro, in fimo, and in vivo models to determine whether GUS inhibition alters the anticancer efficacy of irinotecan. We demonstrate that a single dose of irinotecan increases GI bacterial GUS activity in 1 d and reduces intestinal epithelial cell proliferation in 5 d, both blocked by a single dose of a GUS inhibitor. In a tumor xenograft model, GUS inhibition prevents intestinal toxicity and maintains the antitumor efficacy of irinotecan. Remarkably, GUS inhibitor also effectively blocks the striking irinotecan-induced bloom of Enterobacteriaceae in immune-deficient mice. In a genetically engineered mouse model of cancer, GUS inhibition alleviates gut damage, improves survival, and does not alter gut microbial composition; however, by allowing dose intensification, it dramatically improves irinotecan's effectiveness, reducing tumors to a fraction of that achieved by irinotecan alone, while simultaneously promoting epithelial regeneration. These results indicate that targeted gut microbial enzyme inhibitors can improve cancer chemotherapeutic outcomes by protecting the gut epithelium from microbial dysbiosis and proliferative crypt damage.
Targeted inhibition of gut bacterial beta-glucuronidase activity enhances anticancer drug efficacy.,Bhatt AP, Pellock SJ, Biernat KA, Walton WG, Wallace BD, Creekmore BC, Letertre MM, Swann JR, Wilson ID, Roques JR, Darr DB, Bailey ST, Montgomery SA, Roach JM, Azcarate-Peril MA, Sartor RB, Gharaibeh RZ, Bultman SJ, Redinbo MR Proc Natl Acad Sci U S A. 2020 Mar 13. pii: 1918095117. doi:, 10.1073/pnas.1918095117. PMID:32170007[1]
From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.
See Also
References
- ↑ Bhatt AP, Pellock SJ, Biernat KA, Walton WG, Wallace BD, Creekmore BC, Letertre MM, Swann JR, Wilson ID, Roques JR, Darr DB, Bailey ST, Montgomery SA, Roach JM, Azcarate-Peril MA, Sartor RB, Gharaibeh RZ, Bultman SJ, Redinbo MR. Targeted inhibition of gut bacterial beta-glucuronidase activity enhances anticancer drug efficacy. Proc Natl Acad Sci U S A. 2020 Mar 13. pii: 1918095117. doi:, 10.1073/pnas.1918095117. PMID:32170007 doi:http://dx.doi.org/10.1073/pnas.1918095117
|