|
|
(One intermediate revision not shown.) |
Line 3: |
Line 3: |
| <StructureSection load='5c58' size='340' side='right'caption='[[5c58]], [[Resolution|resolution]] 2.79Å' scene=''> | | <StructureSection load='5c58' size='340' side='right'caption='[[5c58]], [[Resolution|resolution]] 2.79Å' scene=''> |
| == Structural highlights == | | == Structural highlights == |
- | <table><tr><td colspan='2'>[[5c58]] is a 2 chain structure with sequence from [http://en.wikipedia.org/wiki/"bacillus_marcescens"_(bizio_1823)_trevisan_in_de_toni_and_trevisan_1889 "bacillus marcescens" (bizio 1823) trevisan in de toni and trevisan 1889]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=5C58 OCA]. For a <b>guided tour on the structure components</b> use [http://proteopedia.org/fgij/fg.htm?mol=5C58 FirstGlance]. <br> | + | <table><tr><td colspan='2'>[[5c58]] is a 2 chain structure with sequence from [https://en.wikipedia.org/wiki/Serratia_marcescens Serratia marcescens]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=5C58 OCA]. For a <b>guided tour on the structure components</b> use [https://proteopedia.org/fgij/fg.htm?mol=5C58 FirstGlance]. <br> |
- | </td></tr><tr id='ligand'><td class="sblockLbl"><b>[[Ligand|Ligands:]]</b></td><td class="sblockDat" id="ligandDat"><scene name='pdbligand=HEM:PROTOPORPHYRIN+IX+CONTAINING+FE'>HEM</scene></td></tr> | + | </td></tr><tr id='method'><td class="sblockLbl"><b>[[Empirical_models|Method:]]</b></td><td class="sblockDat" id="methodDat">X-ray diffraction, [[Resolution|Resolution]] 2.795Å</td></tr> |
- | <tr id='related'><td class="sblockLbl"><b>[[Related_structure|Related:]]</b></td><td class="sblockDat">[[3csl|3csl]]</td></tr> | + | <tr id='ligand'><td class="sblockLbl"><b>[[Ligand|Ligands:]]</b></td><td class="sblockDat" id="ligandDat"><scene name='pdbligand=HEM:PROTOPORPHYRIN+IX+CONTAINING+FE'>HEM</scene></td></tr> |
- | <tr id='gene'><td class="sblockLbl"><b>[[Gene|Gene:]]</b></td><td class="sblockDat">hasR ([http://www.ncbi.nlm.nih.gov/Taxonomy/Browser/wwwtax.cgi?mode=Info&srchmode=5&id=615 "Bacillus marcescens" (Bizio 1823) Trevisan in de Toni and Trevisan 1889]), hasA ([http://www.ncbi.nlm.nih.gov/Taxonomy/Browser/wwwtax.cgi?mode=Info&srchmode=5&id=615 "Bacillus marcescens" (Bizio 1823) Trevisan in de Toni and Trevisan 1889])</td></tr>
| + | <tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[https://proteopedia.org/fgij/fg.htm?mol=5c58 FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=5c58 OCA], [https://pdbe.org/5c58 PDBe], [https://www.rcsb.org/pdb/explore.do?structureId=5c58 RCSB], [https://www.ebi.ac.uk/pdbsum/5c58 PDBsum], [https://prosat.h-its.org/prosat/prosatexe?pdbcode=5c58 ProSAT]</span></td></tr> |
- | <tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[http://proteopedia.org/fgij/fg.htm?mol=5c58 FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=5c58 OCA], [http://pdbe.org/5c58 PDBe], [http://www.rcsb.org/pdb/explore.do?structureId=5c58 RCSB], [http://www.ebi.ac.uk/pdbsum/5c58 PDBsum], [http://prosat.h-its.org/prosat/prosatexe?pdbcode=5c58 ProSAT]</span></td></tr> | + | |
| </table> | | </table> |
| == Function == | | == Function == |
- | [[http://www.uniprot.org/uniprot/HASA_SERMA HASA_SERMA]] Can bind free heme and also acquire it from hemoglobin. Conveys heme from hemoglobin to the HasR receptor which releases it into the bacterium. HasR alone can take up heme but the synergy between HasA and HasR increases heme uptake 100-fold.<ref>PMID:7937909</ref> <ref>PMID:9171402</ref> | + | [https://www.uniprot.org/uniprot/Q79AD2_SERMA Q79AD2_SERMA] |
| <div style="background-color:#fffaf0;"> | | <div style="background-color:#fffaf0;"> |
| == Publication Abstract from PubMed == | | == Publication Abstract from PubMed == |
Line 25: |
Line 24: |
| </StructureSection> | | </StructureSection> |
| [[Category: Large Structures]] | | [[Category: Large Structures]] |
- | [[Category: Becker, S]] | + | [[Category: Serratia marcescens]] |
- | [[Category: Diederichs, K]] | + | [[Category: Becker S]] |
- | [[Category: Welte, W]] | + | [[Category: Diederichs K]] |
- | [[Category: Heme transfer]] | + | [[Category: Welte W]] |
- | [[Category: Outer membrane receptor]]
| + | |
- | [[Category: Transport protein]]
| + | |
- | [[Category: Transporter complex]]
| + | |
| Structural highlights
Function
Q79AD2_SERMA
Publication Abstract from PubMed
HasR in the outer membrane of Serratia marcescens binds secreted, heme-loaded HasA and translocates the heme to the periplasm to satisfy the cell's demand for iron. The previously published crystal structure of the wild-type complex showed HasA in a very specific binding arrangement with HasR, apt to relax the grasp on the heme and assure its directed transfer to the HasR-binding site. Here, we present a new crystal structure of the heme-loaded HasA arranged with a mutant of HasR, called double mutant (DM) in the following that seemed to mimic a precursor stage of the abovementioned final arrangement before heme transfer. To test this, we performed first molecular dynamics (MD) simulations starting at the crystal structure of the complex of HasA with the DM mutant and then targeted MD simulations of the entire binding process beginning with heme-loaded HasA in solution. When the simulation starts with the former complex, the two proteins in most simulations do not dissociate. When the mutations are reverted to the wild-type sequence, dissociation and development toward the wild-type complex occur in most simulations. This indicates that the mutations create or enhance a local energy minimum. In the targeted MD simulations, the first protein contacts depend upon the chosen starting position of HasA in solution. Subsequently, heme-loaded HasA slides on the external surface of HasR on paths that converge toward the specific arrangement apt for heme transfer. The targeted simulations end when HasR starts to relax the grasp on the heme, the subsequent events being in a time regime inaccessible to the available computing power. Interestingly, none of the ten independent simulation paths visits exactly the arrangement of HasA with HasR seen in the crystal structure of the mutant. Two factors which do not exclude each other could explain these observations: the double mutation creates a non-physiologic potential energy minimum between the two proteins and /or the target potential in the simulation pushes the system along paths deviating from the low-energy paths of the native binding processes. Our results support the former view, but do not exclude the latter possibility.
Binding of HasA by its transmembrane receptor HasR follows a conformational funnel mechanism.,Exner TE, Becker S, Becker S, Boniface-Guiraud A, Delepelaire P, Diederichs K, Welte W Eur Biophys J. 2020 Jan;49(1):39-57. doi: 10.1007/s00249-019-01411-1. Epub 2019, Dec 4. PMID:31802151[1]
From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.
References
- ↑ Exner TE, Becker S, Becker S, Boniface-Guiraud A, Delepelaire P, Diederichs K, Welte W. Binding of HasA by its transmembrane receptor HasR follows a conformational funnel mechanism. Eur Biophys J. 2020 Jan;49(1):39-57. doi: 10.1007/s00249-019-01411-1. Epub 2019, Dec 4. PMID:31802151 doi:http://dx.doi.org/10.1007/s00249-019-01411-1
|