|
|
(One intermediate revision not shown.) |
Line 3: |
Line 3: |
| <SX load='5lzz' size='340' side='right' viewer='molstar' caption='[[5lzz]], [[Resolution|resolution]] 3.47Å' scene=''> | | <SX load='5lzz' size='340' side='right' viewer='molstar' caption='[[5lzz]], [[Resolution|resolution]] 3.47Å' scene=''> |
| == Structural highlights == | | == Structural highlights == |
- | <table><tr><td colspan='2'>[[5lzz]] is a 87 chain structure with sequence from [http://en.wikipedia.org/wiki/European_rabbit European rabbit] and [http://en.wikipedia.org/wiki/Oryctolagus_cuniculus Oryctolagus cuniculus]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=5LZZ OCA]. For a <b>guided tour on the structure components</b> use [http://proteopedia.org/fgij/fg.htm?mol=5LZZ FirstGlance]. <br> | + | <table><tr><td colspan='2'>[[5lzz]] is a 10 chain structure with sequence from [https://en.wikipedia.org/wiki/Oryctolagus_cuniculus Oryctolagus cuniculus]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=5LZZ OCA]. For a <b>guided tour on the structure components</b> use [https://proteopedia.org/fgij/fg.htm?mol=5LZZ FirstGlance]. <br> |
- | </td></tr><tr id='ligand'><td class="sblockLbl"><b>[[Ligand|Ligands:]]</b></td><td class="sblockDat" id="ligandDat"><scene name='pdbligand=GCP:PHOSPHOMETHYLPHOSPHONIC+ACID+GUANYLATE+ESTER'>GCP</scene>, <scene name='pdbligand=MG:MAGNESIUM+ION'>MG</scene>, <scene name='pdbligand=ZN:ZINC+ION'>ZN</scene></td></tr> | + | </td></tr><tr id='method'><td class="sblockLbl"><b>[[Empirical_models|Method:]]</b></td><td class="sblockDat" id="methodDat">Electron Microscopy, [[Resolution|Resolution]] 3.47Å</td></tr> |
- | <tr id='gene'><td class="sblockLbl"><b>[[Gene|Gene:]]</b></td><td class="sblockDat">PELO, CGI-17 ([http://www.ncbi.nlm.nih.gov/Taxonomy/Browser/wwwtax.cgi?mode=Info&srchmode=5&id=9986 European rabbit]), HBS1L, HBS1, KIAA1038 ([http://www.ncbi.nlm.nih.gov/Taxonomy/Browser/wwwtax.cgi?mode=Info&srchmode=5&id=9986 European rabbit])</td></tr>
| + | <tr id='ligand'><td class="sblockLbl"><b>[[Ligand|Ligands:]]</b></td><td class="sblockDat" id="ligandDat"><scene name='pdbligand=GCP:PHOSPHOMETHYLPHOSPHONIC+ACID+GUANYLATE+ESTER'>GCP</scene>, <scene name='pdbligand=MG:MAGNESIUM+ION'>MG</scene>, <scene name='pdbligand=ZN:ZINC+ION'>ZN</scene></td></tr> |
- | <tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[http://proteopedia.org/fgij/fg.htm?mol=5lzz FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=5lzz OCA], [http://pdbe.org/5lzz PDBe], [http://www.rcsb.org/pdb/explore.do?structureId=5lzz RCSB], [http://www.ebi.ac.uk/pdbsum/5lzz PDBsum], [http://prosat.h-its.org/prosat/prosatexe?pdbcode=5lzz ProSAT]</span></td></tr> | + | <tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[https://proteopedia.org/fgij/fg.htm?mol=5lzz FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=5lzz OCA], [https://pdbe.org/5lzz PDBe], [https://www.rcsb.org/pdb/explore.do?structureId=5lzz RCSB], [https://www.ebi.ac.uk/pdbsum/5lzz PDBsum], [https://prosat.h-its.org/prosat/prosatexe?pdbcode=5lzz ProSAT]</span></td></tr> |
| </table> | | </table> |
| == Function == | | == Function == |
- | [[http://www.uniprot.org/uniprot/U3KPD5_RABIT U3KPD5_RABIT]] Binds to the 23S rRNA.[RuleBase:RU000576] [[http://www.uniprot.org/uniprot/PELO_HUMAN PELO_HUMAN]] Required for normal chromosome segregation during cell division and genomic stability (By similarity). May function in recognizing stalled ribosomes and triggering endonucleolytic cleavage of the mRNA, a mechanism to release non-functional ribosomes and degrade damaged mRNAs. May have ribonuclease activity (Potential). [[http://www.uniprot.org/uniprot/G1SS70_RABIT G1SS70_RABIT]] May play a role during erythropoiesis through regulation of transcription factor DDIT3.[HAMAP-Rule:MF_03122] | + | [https://www.uniprot.org/uniprot/RL12_RABIT RL12_RABIT] Component of the large ribosomal subunit (PubMed:26245381, PubMed:27863242, PubMed:30517857). The ribosome is a large ribonucleoprotein complex responsible for the synthesis of proteins in the cell (PubMed:26245381, PubMed:27863242, PubMed:30517857). Binds directly to 26S ribosomal RNA (By similarity).[UniProtKB:P30050]<ref>PMID:26245381</ref> <ref>PMID:27863242</ref> <ref>PMID:30517857</ref> |
| <div style="background-color:#fffaf0;"> | | <div style="background-color:#fffaf0;"> |
| == Publication Abstract from PubMed == | | == Publication Abstract from PubMed == |
Line 21: |
Line 21: |
| | | |
| ==See Also== | | ==See Also== |
- | *[[Receptor for activated protein kinase C 1|Receptor for activated protein kinase C 1]] | + | *[[3D sructureseceptor for activated protein kinase C 1|3D sructureseceptor for activated protein kinase C 1]] |
| == References == | | == References == |
| <references/> | | <references/> |
| __TOC__ | | __TOC__ |
| </SX> | | </SX> |
- | [[Category: European rabbit]] | |
| [[Category: Large Structures]] | | [[Category: Large Structures]] |
| [[Category: Oryctolagus cuniculus]] | | [[Category: Oryctolagus cuniculus]] |
- | [[Category: Brown, A]] | + | [[Category: Brown A]] |
- | [[Category: Hegde, R S]] | + | [[Category: Hegde RS]] |
- | [[Category: Murray, J]] | + | [[Category: Murray J]] |
- | [[Category: Ramakrishnan, V]] | + | [[Category: Ramakrishnan V]] |
- | [[Category: Shao, S]] | + | [[Category: Shao S]] |
- | [[Category: Taunton, J]] | + | [[Category: Taunton J]] |
- | [[Category: Elongation]]
| + | |
- | [[Category: Ribosome]]
| + | |
- | [[Category: Translation]]
| + | |
| Structural highlights
Function
RL12_RABIT Component of the large ribosomal subunit (PubMed:26245381, PubMed:27863242, PubMed:30517857). The ribosome is a large ribonucleoprotein complex responsible for the synthesis of proteins in the cell (PubMed:26245381, PubMed:27863242, PubMed:30517857). Binds directly to 26S ribosomal RNA (By similarity).[UniProtKB:P30050][1] [2] [3]
Publication Abstract from PubMed
In eukaryotes, accurate protein synthesis relies on a family of translational GTPases that pair with specific decoding factors to decipher the mRNA code on ribosomes. We present structures of the mammalian ribosome engaged with decoding factorGTPase complexes representing intermediates of translation elongation (aminoacyl-tRNAeEF1A), termination (eRF1eRF3), and ribosome rescue (PelotaHbs1l). Comparative analyses reveal that each decoding factor exploits the plasticity of the ribosomal decoding center to differentially remodel ribosomal proteins and rRNA. This leads to varying degrees of large-scale ribosome movements and implies distinct mechanisms for communicating information from the decoding center to each GTPase. Additional structural snapshots of the translation termination pathway reveal the conformational changes that choreograph the accommodation of decoding factors into the peptidyl transferase center. Our results provide a structural framework for how different states of the mammalian ribosome are selectively recognized by the appropriate decoding factorGTPase complex to ensure translational fidelity.
Decoding Mammalian Ribosome-mRNA States by Translational GTPase Complexes.,Shao S, Murray J, Brown A, Taunton J, Ramakrishnan V, Hegde RS Cell. 2016 Nov 17;167(5):1229-1240.e15. doi: 10.1016/j.cell.2016.10.046. PMID:27863242[4]
From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.
See Also
References
- ↑ Brown A, Shao S, Murray J, Hegde RS, Ramakrishnan V. Structural basis for stop codon recognition in eukaryotes. Nature. 2015 Aug 27;524(7566):493-6. doi: 10.1038/nature14896. Epub 2015 Aug 5. PMID:26245381 doi:http://dx.doi.org/10.1038/nature14896
- ↑ Shao S, Murray J, Brown A, Taunton J, Ramakrishnan V, Hegde RS. Decoding Mammalian Ribosome-mRNA States by Translational GTPase Complexes. Cell. 2016 Nov 17;167(5):1229-1240.e15. doi: 10.1016/j.cell.2016.10.046. PMID:27863242 doi:http://dx.doi.org/10.1016/j.cell.2016.10.046
- ↑ Flis J, Holm M, Rundlet EJ, Loerke J, Hilal T, Dabrowski M, Burger J, Mielke T, Blanchard SC, Spahn CMT, Budkevich TV. tRNA Translocation by the Eukaryotic 80S Ribosome and the Impact of GTP Hydrolysis. Cell Rep. 2018 Dec 4;25(10):2676-2688.e7. doi: 10.1016/j.celrep.2018.11.040. PMID:30517857 doi:http://dx.doi.org/10.1016/j.celrep.2018.11.040
- ↑ Shao S, Murray J, Brown A, Taunton J, Ramakrishnan V, Hegde RS. Decoding Mammalian Ribosome-mRNA States by Translational GTPase Complexes. Cell. 2016 Nov 17;167(5):1229-1240.e15. doi: 10.1016/j.cell.2016.10.046. PMID:27863242 doi:http://dx.doi.org/10.1016/j.cell.2016.10.046
|