|
|
Line 3: |
Line 3: |
| <SX load='6acd' size='340' side='right' viewer='molstar' caption='[[6acd]], [[Resolution|resolution]] 3.90Å' scene=''> | | <SX load='6acd' size='340' side='right' viewer='molstar' caption='[[6acd]], [[Resolution|resolution]] 3.90Å' scene=''> |
| == Structural highlights == | | == Structural highlights == |
- | <table><tr><td colspan='2'>[[6acd]] is a 3 chain structure. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=6ACD OCA]. For a <b>guided tour on the structure components</b> use [http://proteopedia.org/fgij/fg.htm?mol=6ACD FirstGlance]. <br> | + | <table><tr><td colspan='2'>[[6acd]] is a 3 chain structure with sequence from [https://en.wikipedia.org/wiki/Severe_acute_respiratory_syndrome-related_coronavirus Severe acute respiratory syndrome-related coronavirus]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=6ACD OCA]. For a <b>guided tour on the structure components</b> use [https://proteopedia.org/fgij/fg.htm?mol=6ACD FirstGlance]. <br> |
- | </td></tr><tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[http://proteopedia.org/fgij/fg.htm?mol=6acd FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=6acd OCA], [http://pdbe.org/6acd PDBe], [http://www.rcsb.org/pdb/explore.do?structureId=6acd RCSB], [http://www.ebi.ac.uk/pdbsum/6acd PDBsum], [http://prosat.h-its.org/prosat/prosatexe?pdbcode=6acd ProSAT]</span></td></tr> | + | </td></tr><tr id='method'><td class="sblockLbl"><b>[[Empirical_models|Method:]]</b></td><td class="sblockDat" id="methodDat">Electron Microscopy, [[Resolution|Resolution]] 3.9Å</td></tr> |
| + | <tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[https://proteopedia.org/fgij/fg.htm?mol=6acd FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=6acd OCA], [https://pdbe.org/6acd PDBe], [https://www.rcsb.org/pdb/explore.do?structureId=6acd RCSB], [https://www.ebi.ac.uk/pdbsum/6acd PDBsum], [https://prosat.h-its.org/prosat/prosatexe?pdbcode=6acd ProSAT]</span></td></tr> |
| </table> | | </table> |
| == Function == | | == Function == |
- | [[http://www.uniprot.org/uniprot/SPIKE_CVHSA SPIKE_CVHSA]] S1 attaches the virion to the cell membrane by interacting with human ACE2 and CLEC4M/DC-SIGNR, initiating the infection. Binding to the receptor and internalization of the virus into the endosomes of the host cell probably induces conformational changes in the S glycoprotein. Proteolysis by cathepsin CTSL may unmask the fusion peptide of S2 and activate membranes fusion within endosomes. S2 is a class I viral fusion protein. Under the current model, the protein has at least three conformational states: pre-fusion native state, pre-hairpin intermediate state, and post-fusion hairpin state. During viral and target cell membrane fusion, the coiled coil regions (heptad repeats) assume a trimer-of-hairpins structure, positioning the fusion peptide in close proximity to the C-terminal region of the ectodomain. The formation of this structure appears to drive apposition and subsequent fusion of viral and target cell membranes. | + | [https://www.uniprot.org/uniprot/SPIKE_SARS SPIKE_SARS] May down-regulate host tetherin (BST2) by lysosomal degradation, thereby counteracting its antiviral activity.<ref>PMID:31199522</ref> Attaches the virion to the cell membrane by interacting with host receptor, initiating the infection (By similarity). Binding to human ACE2 and CLEC4M/DC-SIGNR receptors and internalization of the virus into the endosomes of the host cell induces conformational changes in the S glycoprotein. Proteolysis by cathepsin CTSL may unmask the fusion peptide of S2 and activate membrane fusion within endosomes.[HAMAP-Rule:MF_04099]<ref>PMID:14670965</ref> <ref>PMID:15496474</ref> Mediates fusion of the virion and cellular membranes by acting as a class I viral fusion protein. Under the current model, the protein has at least three conformational states: pre-fusion native state, pre-hairpin intermediate state, and post-fusion hairpin state. During viral and target cell membrane fusion, the coiled coil regions (heptad repeats) assume a trimer-of-hairpins structure, positioning the fusion peptide in close proximity to the C-terminal region of the ectodomain. The formation of this structure appears to drive apposition and subsequent fusion of viral and target cell membranes.[HAMAP-Rule:MF_04099] Acts as a viral fusion peptide which is unmasked following S2 cleavage occurring upon virus endocytosis.[HAMAP-Rule:MF_04099]<ref>PMID:19321428</ref> |
| <div style="background-color:#fffaf0;"> | | <div style="background-color:#fffaf0;"> |
| == Publication Abstract from PubMed == | | == Publication Abstract from PubMed == |
Line 19: |
Line 20: |
| | | |
| ==See Also== | | ==See Also== |
- | *[[Spike protein|Spike protein]] | + | *[[Sandbox 3001|Sandbox 3001]] |
| + | *[[Spike protein 3D structures|Spike protein 3D structures]] |
| == References == | | == References == |
| <references/> | | <references/> |
Line 25: |
Line 27: |
| </SX> | | </SX> |
| [[Category: Large Structures]] | | [[Category: Large Structures]] |
- | [[Category: Gui, M]] | + | [[Category: Severe acute respiratory syndrome-related coronavirus]] |
- | [[Category: Song, W]]
| + | [[Category: Gui M]] |
- | [[Category: Class i fusion protein]]
| + | [[Category: Song W]] |
- | [[Category: Glycoprotein]]
| + | |
- | [[Category: Membrane fusion]]
| + | |
- | [[Category: Sars-cov]]
| + | |
- | [[Category: Spike]] | + | |
- | [[Category: Viral protein]] | + | |
| Structural highlights
Function
SPIKE_SARS May down-regulate host tetherin (BST2) by lysosomal degradation, thereby counteracting its antiviral activity.[1] Attaches the virion to the cell membrane by interacting with host receptor, initiating the infection (By similarity). Binding to human ACE2 and CLEC4M/DC-SIGNR receptors and internalization of the virus into the endosomes of the host cell induces conformational changes in the S glycoprotein. Proteolysis by cathepsin CTSL may unmask the fusion peptide of S2 and activate membrane fusion within endosomes.[HAMAP-Rule:MF_04099][2] [3] Mediates fusion of the virion and cellular membranes by acting as a class I viral fusion protein. Under the current model, the protein has at least three conformational states: pre-fusion native state, pre-hairpin intermediate state, and post-fusion hairpin state. During viral and target cell membrane fusion, the coiled coil regions (heptad repeats) assume a trimer-of-hairpins structure, positioning the fusion peptide in close proximity to the C-terminal region of the ectodomain. The formation of this structure appears to drive apposition and subsequent fusion of viral and target cell membranes.[HAMAP-Rule:MF_04099] Acts as a viral fusion peptide which is unmasked following S2 cleavage occurring upon virus endocytosis.[HAMAP-Rule:MF_04099][4]
Publication Abstract from PubMed
The trimeric SARS coronavirus (SARS-CoV) surface spike (S) glycoprotein consisting of three S1-S2 heterodimers binds the cellular receptor angiotensin-converting enzyme 2 (ACE2) and mediates fusion of the viral and cellular membranes through a pre- to postfusion conformation transition. Here, we report the structure of the SARS-CoV S glycoprotein in complex with its host cell receptor ACE2 revealed by cryo-electron microscopy (cryo-EM). The complex structure shows that only one receptor-binding domain of the trimeric S glycoprotein binds ACE2 and adopts a protruding "up" conformation. In addition, we studied the structures of the SARS-CoV S glycoprotein and its complexes with ACE2 in different in vitro conditions, which may mimic different conformational states of the S glycoprotein during virus entry. Disassociation of the S1-ACE2 complex from some of the prefusion spikes was observed and characterized. We also characterized the rosette-like structures of the clustered SARS-CoV S2 trimers in the postfusion state observed on electron micrographs. Structural comparisons suggested that the SARS-CoV S glycoprotein retains a prefusion architecture after trypsin cleavage into the S1 and S2 subunits and acidic pH treatment. However, binding to the receptor opens up the receptor-binding domain of S1, which could promote the release of the S1-ACE2 complex and S1 monomers from the prefusion spike and trigger the pre- to postfusion conformational transition.
Cryo-EM structure of the SARS coronavirus spike glycoprotein in complex with its host cell receptor ACE2.,Song W, Gui M, Wang X, Xiang Y PLoS Pathog. 2018 Aug 13;14(8):e1007236. doi: 10.1371/journal.ppat.1007236. PMID:30102747[5]
From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.
See Also
References
- ↑ Wang SM, Huang KJ, Wang CT. Severe acute respiratory syndrome coronavirus spike protein counteracts BST2-mediated restriction of virus-like particle release. J Med Virol. 2019 Oct;91(10):1743-1750. doi: 10.1002/jmv.25518. Epub 2019 Jul 10. PMID:31199522 doi:http://dx.doi.org/10.1002/jmv.25518
- ↑ Wong SK, Li W, Moore MJ, Choe H, Farzan M. A 193-amino acid fragment of the SARS coronavirus S protein efficiently binds angiotensin-converting enzyme 2. J Biol Chem. 2004 Jan 30;279(5):3197-201. Epub 2003 Dec 11. PMID:14670965 doi:http://dx.doi.org/10.1074/jbc.C300520200
- ↑ Jeffers SA, Tusell SM, Gillim-Ross L, Hemmila EM, Achenbach JE, Babcock GJ, Thomas WD Jr, Thackray LB, Young MD, Mason RJ, Ambrosino DM, Wentworth DE, Demartini JC, Holmes KV. CD209L (L-SIGN) is a receptor for severe acute respiratory syndrome coronavirus. Proc Natl Acad Sci U S A. 2004 Nov 2;101(44):15748-53. doi:, 10.1073/pnas.0403812101. Epub 2004 Oct 20. PMID:15496474 doi:http://dx.doi.org/10.1073/pnas.0403812101
- ↑ Belouzard S, Chu VC, Whittaker GR. Activation of the SARS coronavirus spike protein via sequential proteolytic cleavage at two distinct sites. Proc Natl Acad Sci U S A. 2009 Apr 7;106(14):5871-6. doi:, 10.1073/pnas.0809524106. Epub 2009 Mar 24. PMID:19321428 doi:http://dx.doi.org/10.1073/pnas.0809524106
- ↑ Song W, Gui M, Wang X, Xiang Y. Cryo-EM structure of the SARS coronavirus spike glycoprotein in complex with its host cell receptor ACE2. PLoS Pathog. 2018 Aug 13;14(8):e1007236. doi: 10.1371/journal.ppat.1007236. PMID:30102747 doi:http://dx.doi.org/10.1371/journal.ppat.1007236
|