|
|
(One intermediate revision not shown.) |
Line 3: |
Line 3: |
| <StructureSection load='2hdb' size='340' side='right'caption='[[2hdb]], [[Resolution|resolution]] 2.20Å' scene=''> | | <StructureSection load='2hdb' size='340' side='right'caption='[[2hdb]], [[Resolution|resolution]] 2.20Å' scene=''> |
| == Structural highlights == | | == Structural highlights == |
- | <table><tr><td colspan='2'>[[2hdb]] is a 2 chain structure with sequence from [http://en.wikipedia.org/wiki/"enterococcus_proteiformis"_thiercelin_and_jouhaud_1903 "enterococcus proteiformis" thiercelin and jouhaud 1903]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=2HDB OCA]. For a <b>guided tour on the structure components</b> use [http://proteopedia.org/fgij/fg.htm?mol=2HDB FirstGlance]. <br> | + | <table><tr><td colspan='2'>[[2hdb]] is a 2 chain structure with sequence from [https://en.wikipedia.org/wiki/Enterococcus_faecalis Enterococcus faecalis]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=2HDB OCA]. For a <b>guided tour on the structure components</b> use [https://proteopedia.org/fgij/fg.htm?mol=2HDB FirstGlance]. <br> |
- | </td></tr><tr id='ligand'><td class="sblockLbl"><b>[[Ligand|Ligands:]]</b></td><td class="sblockDat" id="ligandDat"><scene name='pdbligand=MES:2-(N-MORPHOLINO)-ETHANESULFONIC+ACID'>MES</scene>, <scene name='pdbligand=SO4:SULFATE+ION'>SO4</scene></td></tr> | + | </td></tr><tr id='method'><td class="sblockLbl"><b>[[Empirical_models|Method:]]</b></td><td class="sblockDat" id="methodDat">X-ray diffraction, [[Resolution|Resolution]] 2.2Å</td></tr> |
- | <tr id='related'><td class="sblockLbl"><b>[[Related_structure|Related:]]</b></td><td class="sblockDat">[[1ysl|1ysl]], [[1x9e|1x9e]], [[1txt|1txt]], [[1tvz|1tvz]], [[1xpk|1xpk]], [[1xpm|1xpm]]</td></tr>
| + | <tr id='ligand'><td class="sblockLbl"><b>[[Ligand|Ligands:]]</b></td><td class="sblockDat" id="ligandDat"><scene name='pdbligand=MES:2-(N-MORPHOLINO)-ETHANESULFONIC+ACID'>MES</scene>, <scene name='pdbligand=SO4:SULFATE+ION'>SO4</scene></td></tr> |
- | <tr id='gene'><td class="sblockLbl"><b>[[Gene|Gene:]]</b></td><td class="sblockDat">mvaS ([http://www.ncbi.nlm.nih.gov/Taxonomy/Browser/wwwtax.cgi?mode=Info&srchmode=5&id=1351 "Enterococcus proteiformis" Thiercelin and Jouhaud 1903])</td></tr> | + | <tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[https://proteopedia.org/fgij/fg.htm?mol=2hdb FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=2hdb OCA], [https://pdbe.org/2hdb PDBe], [https://www.rcsb.org/pdb/explore.do?structureId=2hdb RCSB], [https://www.ebi.ac.uk/pdbsum/2hdb PDBsum], [https://prosat.h-its.org/prosat/prosatexe?pdbcode=2hdb ProSAT]</span></td></tr> |
- | <tr id='activity'><td class="sblockLbl"><b>Activity:</b></td><td class="sblockDat"><span class='plainlinks'>[http://en.wikipedia.org/wiki/Hydroxymethylglutaryl-CoA_synthase Hydroxymethylglutaryl-CoA synthase], with EC number [http://www.brenda-enzymes.info/php/result_flat.php4?ecno=2.3.3.10 2.3.3.10] </span></td></tr>
| + | |
- | <tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[http://proteopedia.org/fgij/fg.htm?mol=2hdb FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=2hdb OCA], [http://pdbe.org/2hdb PDBe], [http://www.rcsb.org/pdb/explore.do?structureId=2hdb RCSB], [http://www.ebi.ac.uk/pdbsum/2hdb PDBsum], [http://prosat.h-its.org/prosat/prosatexe?pdbcode=2hdb ProSAT]</span></td></tr> | + | |
| </table> | | </table> |
| + | == Function == |
| + | [https://www.uniprot.org/uniprot/HMGCS_ENTFL HMGCS_ENTFL] Catalyzes the condensation of acetyl-CoA with acetoacetyl-CoA to form 3-hydroxy-3-methylglutaryl-CoA (HMG-CoA). Functions in the mevalonate (MVA) pathway leading to isopentenyl diphosphate (IPP), a key precursor for the biosynthesis of isoprenoid compounds.<ref>PMID:12107122</ref> <ref>PMID:23794621</ref> |
| == Evolutionary Conservation == | | == Evolutionary Conservation == |
| [[Image:Consurf_key_small.gif|200px|right]] | | [[Image:Consurf_key_small.gif|200px|right]] |
Line 33: |
Line 33: |
| __TOC__ | | __TOC__ |
| </StructureSection> | | </StructureSection> |
- | [[Category: Enterococcus proteiformis thiercelin and jouhaud 1903]] | + | [[Category: Enterococcus faecalis]] |
- | [[Category: Hydroxymethylglutaryl-CoA synthase]]
| + | |
| [[Category: Large Structures]] | | [[Category: Large Structures]] |
- | [[Category: Stauffacher, C V]] | + | [[Category: Stauffacher CV]] |
- | [[Category: Steussy, C N]] | + | [[Category: Steussy CN]] |
- | [[Category: Sutherlin, A]] | + | [[Category: Sutherlin A]] |
- | [[Category: Lyase]]
| + | |
- | [[Category: Mutant]]
| + | |
- | [[Category: Protein]]
| + | |
- | [[Category: Synthase]]
| + | |
- | [[Category: Thiolase fold]]
| + | |
| Structural highlights
Function
HMGCS_ENTFL Catalyzes the condensation of acetyl-CoA with acetoacetyl-CoA to form 3-hydroxy-3-methylglutaryl-CoA (HMG-CoA). Functions in the mevalonate (MVA) pathway leading to isopentenyl diphosphate (IPP), a key precursor for the biosynthesis of isoprenoid compounds.[1] [2]
Evolutionary Conservation
Check, as determined by ConSurfDB. You may read the explanation of the method and the full data available from ConSurf.
Publication Abstract from PubMed
Recent structural studies of the HMG-CoA synthase members of the thiolase superfamily have shown that the catalytic loop containing the nucleophilic cysteine follows the phi and psi angle pattern of a II' beta turn. However, the i + 1 residue is conserved as an alanine, which is quite unusual in this position as it must adopt a strained positive phi angle to accommodate the geometry of the turn. To assess the effect of the conserved strain in the catalytic loop, alanine 110 of Enterococcus faecalis 3-hydroxy-3-methylglutaryl coenzyme A (HMG-CoA) synthase was mutated to a glycine. Subsequent enzymatic studies showed that the overall reaction rate of the enzyme was increased 140-fold. An X-ray crystallographic study of the Ala110Gly mutant enzyme demonstrated unanticipated adjustments in the active site that resulted in additional stabilization of all three steps of the reaction pathway. The rates of acetylation and hydrolysis of the mutant enzyme increased because the amide nitrogen of Ser308 shifts 0.4 A toward the catalytic cysteine residue. This motion positions the nitrogen to better stabilize the intermediate negative charge that develops on the carbonyl oxygen of the acetyl group during both the formation of the acyl-enzyme intermediate and its hydrolysis. In addition, the hydroxyl of Ser308 rotates 120 degrees to a position where it is able to stabilize the carbanion intermediate formed by the methyl group of the acetyl-S-enzyme during its condensation with acetoacetyl-CoA.
A structural limitation on enzyme activity: the case of HMG-CoA synthase.,Steussy CN, Robison AD, Tetrick AM, Knight JT, Rodwell VW, Stauffacher CV, Sutherlin AL Biochemistry. 2006 Dec 5;45(48):14407-14. PMID:17128980[3]
From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.
References
- ↑ Sutherlin A, Hedl M, Sanchez-Neri B, Burgner JW 2nd, Stauffacher CV, Rodwell VW. Enterococcus faecalis 3-hydroxy-3-methylglutaryl coenzyme A synthase, an enzyme of isopentenyl diphosphate biosynthesis. J Bacteriol. 2002 Aug;184(15):4065-70. PMID:12107122 doi:10.1128/JB.184.15.4065-4070.2002
- ↑ VanNice JC, Skaff DA, Wyckoff GJ, Miziorko HM. Expression in Haloferax volcanii of 3-hydroxy-3-methylglutaryl coenzyme A synthase facilitates isolation and characterization of the active form of a key enzyme required for polyisoprenoid cell membrane biosynthesis in halophilic archaea. J Bacteriol. 2013 Sep;195(17):3854-62. PMID:23794621 doi:10.1128/JB.00485-13
- ↑ Steussy CN, Robison AD, Tetrick AM, Knight JT, Rodwell VW, Stauffacher CV, Sutherlin AL. A structural limitation on enzyme activity: the case of HMG-CoA synthase. Biochemistry. 2006 Dec 5;45(48):14407-14. PMID:17128980 doi:http://dx.doi.org/10.1021/bi061505q
|